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Design, System, Application

From fragments to function: data-driven design of
high-performance non-fullerene acceptors for
organic photovoltaics

*a

Bibhas Das, {22 Kalyani Patrikar,? Atharva Sachin Keny® and Anirban Mondal
The rapid advancement of organic photovoltaics (OPVs) depends critically on discovering non-fullerene
acceptors (NFAs) with finely balanced optoelectronic properties. Yet, identifying optimal NFAs remains
challenging due to the vast chemical space and complex, non-linear structure-property relationships. Here,
we present a computational framework integrating physics-guided molecular fragmentation, hierarchical
clustering, and combinatorial assembly with uncertainty-aware machine learning to accelerate NFA design.
Beginning with 257 experimentally reported NFAs, we assembled a synthetically viable library of 500 000 NFAs
with acceptor-donor-acceptor (ADA) structures. An evidential message-passing neural network (MPNN) was
trained to predict oscillator strength (f), LUMO offset (AE ymo). absorption maximum (1max), and exciton
binding energy (Ey), achieving high accuracy with built-in uncertainty quantification. Compared to the training
distribution, our pipeline produced a deterministic enrichment of candidates with tightly converged, target-
optimized values (f = 1.5, AE ymo < 0.25 eV, £, < 0.32 eV), in line with state-of-the-art OPV performance
benchmarks. Quantum chemical validation confirmed prediction fidelity, with all deviations within 22%. This
unified and interpretable framework provides a scalable route for rational NFA discovery and establishes a
generalizable benchmark for machine learning-guided materials design in organic electronics.

We present a physics-guided, data-driven framework for rationally designing non-fullerene acceptors (NFAs) in organic photovoltaics. Our approach
integrates molecular fragmentation, hierarchical clustering, and uncertainty-aware machine learning to construct and screen a synthetically meaningful
library of half a million candidate molecules. By embedding chemical intuition at the building-block level, the framework ensures interpretable structure—

property relationships while directly targeting critical OPV performance trade-offs such as exciton binding energy, LUMO offset, and oscillator strength.

The system we investigate—donor-acceptor-donor type NFAs—represents the current frontier of high-efficiency organic solar cells. Beyond photovoltaics,
this methodology provides a generalizable route for accelerating molecular discovery across organic electronics, enabling scalable and rational design of

semiconductors for applications ranging from light-emitting diodes to photodetectors and transistors.

1 Introduction

morphological stability, and superior charge transport,
establishing them as the cornerstone of next-generation OPV

Over the past decade, organic photovoltaics (OPVs) have
achieved remarkable gains in power conversion efficiency
(PCE), driven by advances in molecular design,'” device
engineering,"® and processing technologies.”** A major
turning point has been the emergence of non-fullerene
acceptors (NFAs),">" which extend the absorption profile of
OPVs and enable efficient solar energy capture across a
broader spectrum. Unlike their fullerene counterparts, NFAs
provide tunable optoelectronic properties, enhanced
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technologies.** !

Achieving high OPV efficiency requires fine control over a
hierarchy of microscopic processes—exciton generation,
charge separation, transport, and recombination—each of
which depends sensitively on molecular properties such as
absorption breadth, exciton binding energy, and charge
mobility.***° While empirical studies have uncovered
correlations between structure and performance,**** the
search for optimal NFAs remains formidable. The underlying
challenge stems from the vast chemical space and the
complex, non-linear mapping between molecular structure
and device-level performance.*>~>°

To navigate this complexity, machine learning (ML) has
become a powerful tool for accelerating molecular

Mol. Syst. Des. Eng.


http://crossmark.crossref.org/dialog/?doi=10.1039/d5me00182j&domain=pdf&date_stamp=2025-12-16
http://orcid.org/0000-0002-9671-5275
http://orcid.org/0000-0003-3029-8840
https://doi.org/10.1039/d5me00182j
https://pubs.rsc.org/en/journals/journal/ME

Published on 08 December 2025. Downloaded on 12/18/2025 11:03:09 AM.

Paper

discovery.">***$°¢7 By learning from experimental or
computational datasets, ML models can predict key
properties of novel candidates and enable efficient pre-
screening.*®°876%6265°67  Nevertheless, =~ most  existing
frameworks suffer from a critical limitation: they rely on
random or unconstrained generation of molecular structures,
which are then filtered by the algorithm. This approach often
overlooks promising candidates and provides limited
chemical interpretability. Moreover, relatively little attention
has been paid to how the input molecular building blocks

themselves can be tuned to guide  property
Optimization.48,58—60,62,63,65—67
Here, we introduce a systematic computational

framework for the targeted design of NFAs that embeds
chemical intuition directly into the generative process. Our
approach begins by deconstructing 257 experimentally
reported NFAs into modular fragments that preserve donor-
acceptor motifs and conjugation pathways. Each fragment is
characterized using quantum chemical (QM) calculations to
obtain optoelectronic descriptors including LUMO energy
(Erumo), exciton binding energy (Ep), electron affinity (EA),
HOMO-LUMO gap (AEuomo-Lumo), oscillator strength (f),
quadrupole moment (Q,,), and absorption maximum (Ayax)-
Unsupervised learning methods such as principal
component analysis (PCA) and k-means clustering then
organize these fragments into chemically meaningful groups,
enabling rational design space navigation. By employing a
multi-objective optimization strategy, we directly target the
central trade-offs in OPV design—minimizing exciton
binding energy and LUMO offset (AE ymo) to promote
charge separation, while maximizing oscillator strength and
optical activity through favorable A,,.x values.

Numerous machine-learning and deep-learning
approaches have been explored for OPV and NFA design,
ranging from supervised models trained on molecular
descriptors and quantum-mechanical features to high-
throughput virtual screening workflows driven by semi-
empirical or DFT calculations,?®>*°>°65965768 Recent studies
have introduced NFA-specific representations, including sub-
unit descriptors, fragment-based fingerprints, and DL
architectures that jointly optimise donor-acceptor pairs.®®”?
While these methods have significantly advanced
computational OPV design, they typically operate on whole-
molecule fingerprints or latent embeddings, which provide
limited interpretability and often lack safeguards against
chemically unrealistic structures. In contrast, our framework
introduces a chemically guided, electron-withdrawing group
(EWG)-aware  fragmentation  strategy, fragment-level
clustering with optoelectronic interpretability, and an
uncertainty-aware message-passing neural network (MPNN)
for multi-objective optimization. This combination enables
synthetically grounded molecular generation and offers a
complementary, transparent route to ML-assisted NFA
discovery.

From this structured and interpretable fragment space, we
generate 500000 new NFAs through guided recombination
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across cluster boundaries, ensuring systematic yet chemically
relevant exploration. A message-passing neural network
trained on the manually compiled and quality-controlled
dataset predicts the optoelectronic properties of these
candidates, and high-ranking structures are validated with
density functional theory (DFT). The excellent agreement
between ML predictions and QM benchmarks highlights both
accuracy and efficiency. By uniting physics-guided
fragmentation, data-driven clustering, and ML-assisted
screening, our framework offers a scalable and interpretable
route to molecular design. Beyond OPVs, this methodology
provides a generalizable blueprint for accelerating the
discovery of functional organic semiconductors with tailored
electronic and optical properties.

2 Methods

Our study is established on a manually compiled and quality-
controlled dataset of 257 non-fullerene acceptor molecules
with acceptor-donor-acceptor (A-D-A) type structure, each
characterized by quantum mechanical descriptors (dataset-I).
This dataset was derived from a broader collection of NFAs
reported in the literature®® and was initially developed as part
of a previous study in our group.®® The selection process was
designed to capture the structural diversity of ADA-type NFAs
while ensuring a representative distribution of key electronic
and optical properties relevant to OPVs.

2.1 Automated fragmentation and structural classification

To better understand how the structure of ADA-type NFAs
influences their electronic properties, we developed a
cheminformatics-based method for automated molecular
fragmentation and classification. This approach, built using
the RDKit library,”* allows us to break down complex
molecules into meaningful parts while preserving key
electronic features.

Fragmentation procedure and tagging system. We start by
converting the molecular structures from their SMILES
representations into RDKit objects. The first step in the
analysis focuses on locating EWGs, which are known to play
an important role in the electronic behavior of NFAs. We use
a well-chosen library of SMILES patterns to detect these
groups in each molecule. Once identified, the bonds directly
connected to the EWGs are marked and excluded from
fragmentation to keep the acceptor subgroup intact (see
Fig. 1a). Next, we break bonds primarily at junctions between
aromatic and non-aromatic regions—usually where the donor
core connects with flank groups. We introduce a tagging
system to keep track of how the fragments are connected. At
each cut point, we label the atoms with special atomic
numbers (greater than 49) that act as markers. These tags
help us maintain a clear map of how the fragments were
initially connected, making it easier to reconstruct or analyze
the molecule later.

Identifying the donor core. To find the central donor unit
in each molecule, we use two criteria: (i) the number of fused

This journal is © The Royal Society of Chemistry and IChemE 2025
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Fig. 1 Schematic overview of the fragment-based molecular design framework. (a) Experimentally validated non-fullerene acceptors are
decomposed into modular fragments, which are characterized via quantum chemical calculations to derive key optoelectronic descriptors. (b)
Dimensionality reduction (PCA) and clustering (k-means) identify chemically meaningful fragment families. (c) Strategic recombination of

fragments across clusters enables the generation of novel NFAs, (d) whi

ch are screened using a message-passing neural network trained on

computed properties. (e) Top candidates are further validated via DFT calculations to ensure predictive fidelity and optimize structure-property

relationships for efficient organic photovoltaics.

aromatic rings in a fragment and (ii) the number of tagged
connection points. This helps us reliably identify the central
donor structure, especially in complex molecules. Once the
donor is isolated, we perform another fragmentation round—
this time only at the bonds associated with EWGs. This
allows us to cleanly separate the acceptor units from the rest
of the molecule while still using the tagging system to keep
connectivity information.

Classifying molecular fragments. After fragmentation, the
resulting pieces are grouped into four categories:

e Donor cores — aromatic fused ring systems forming the
molecule's electronic backbone,

e Acceptor units - fragments that include electron-
withdrawing groups,

e Side chains - non-aromatic parts without any EWGs and

e Conjugated extensions — aromatic fragments attached to
the donor core but not part of the fused ring system.

This journal is © The Royal Society of Chemistry and IChemE 2025

To assign these categories, we use a step-by-step
classification system that checks ring structures, matches
known substructures, and examines aromaticity. Special care
was taken to distinguish between true donor units and other
aromatic fragments, especially in cases with branching or
non-fused rings. The tagging system also tracks how
fragments are connected—whether donor-to-acceptor, donor-
to-side-chain, or donor-to-conjugated-extension. This ensures
that important connectivity information is preserved for later
use.

Generating output and ensuring robustness. The final
output includes the SMILES strings of all key fragments,
along with associated electronic and structural information,
including HOMO/LUMO energy levels, oscillator strengths,
and properties of the parent molecules. These outputs can be
used in downstream analyses like clustering, principal
component analysis, or machine learning models. We have
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also built in extensive error-checking throughout the
pipeline. The system verifies ring detection, validates how
fragments are classified, and fixes any issues with tagging. It
also handles exceptional cases—like complex fused ring
systems or unclear conjugation paths—using fallback rules to
ensure consistency and reliability. Overall, this method offers
a robust, modular, and scalable approach for breaking down
and analyzing ADA-type NFAs.

2.2 Unsupervised analysis of structural and electronic
features

To understand how variations in molecular substructure
influence electronic properties in ADA-type NFAs, we
employed a data analysis pipeline that integrates
cheminformatics and machine learning. Molecular SMILES
strings were processed using RDKit and fragmented as
described earlier. Structural roles—donor, acceptor, side
chain, or extension—were assigned to each fragment, and
inter-fragment connections and associated physicochemical
properties were stored in a structured JSON format for
downstream analysis.

We focus on seven key optoelectronic descriptors for each
acceptor fragment: the LUMO-LUMO+1 energy difference
(AELumo), exciton binding energy (Ep), oscillator strength (f),
quadrupole moment (Q,o), electron affinity (EA), absorption
maximum (Aynax), and HOMO-LUMO gap (AEyomo-Lumo)- For
each NFA fragment, we evaluated these seven quantum-
chemical descriptors because, together, they provide a
compact yet comprehensive representation of the electronic,
optical, and interfacial characteristics most relevant to NFA
performance. To enable a physically guided reduction of this
feature space, the descriptors were organized into two
conceptually motivated groups: (i) gap- and exciton-related
quantities (AE ymo, Ebs Amax, and AEgomo-Lumo) that co-vary
with conjugation and define the energetic landscape
governing charge generation, and (ii) charge-distribution and
optical-response descriptors (EA, f, and Q,) that influence
absorption intensity and donor-acceptor electrostatics.
Scaling these two groups separately prior to PCA places the
dominant design trade-offs along orthogonal axes, making
the resulting low-dimensional representation more
interpretable and better aligned with the multi-objective
property targets used for molecular screening. This strategy
ensures that the subsequent clustering analysis reflects
meaningful physicochemical distinctions among fragments
rather than artifacts of feature scaling. We implemented a
two-stage dimensionality-reduction strategy to manage this
seven-dimensional space while preserving its most
informative variations. First, each descriptor group was
independently standardized using the StandardScaler method
to ensure uniform scaling. Principal component analysis was
then applied separately to the two groups, compressing them
into one-dimensional representations that capture their
dominant patterns. With the processed features, we
performed clustering to identify the underlying structure in
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the fragment space. Both k-means clustering (with k = 3) and
affinity propagation were applied to the combined
standardized features, and the elbow method, silhouette
score, and Calinski-Harabasz index were used to select a
robust and well-separated clustering solution that reflects
genuine differences in physicochemical behavior.

We generated parallel coordinates plots, PCA scatter plots,
and molecular renderings to visualize and interpret the
clustering results. For each cluster, we compiled detailed
statistical summaries, including mean values and standard
deviations for all descriptors. We also examined feature
contributions to each PCA axis and assessed how well the
clusters are separated. This automated and comprehensive
analysis framework allows us to systematically group
molecular fragments with similar electronic characteristics.

2.3 Combinatorial assembly of donor-acceptor fragments

We developed a modular framework that assembles
molecular fragments—donor cores, acceptors, side chains,
and conjugated extensions—through a combinatorial strategy
to construct a diverse library of ADA-type NFA molecules.
This assembly process was guided by a tagging system that
identifies chemically viable connection points and ensured
consistent structural integration across fragments. We began
by loading picked out sets of SMILES strings representing
different fragment types from structured CSV files. Each
donor core was analyzed for available connection points
using the pre-defined tags described earlier. Connectivity
rules were stored in JSON format, enabling flexible and
scalable manipulation. Fragment combinations were
deliberately chosen from distinct clusters based on their
electronic and structural properties to enhance molecular
diversity.

The assembly followed a stepwise approach. First, tag-
matching algorithms attached zero or more conjugated
extensions to specific positions on the donor core. These
extensions were bonded to the donor by aligning
complementary tags, after which the tags were removed while
ensuring molecular integrity. Next, side chains were added to
the donor or any attached conjugated extensions, with an
internal indexing scheme managing multiple attachment
sites during this stage. To avoid generating chemically
implausible NFAs, the tagging system was embedded within
a multi-stage validation procedure. Fragmentation was
performed only at chemically reasonable single-bond
junctions (e.g., donor-flank or donor-side-chain linkages),
while electron-withdrawing acceptor motifs were protected
from cleavage. Tag codes uniquely specify donor-acceptor,
donor-side-chain, donor-conjugated-extension, and extension-
side-chain junctions, and these tags act as hard constraints
during recombination: only matching tag types may be
paired, and all resulting bonds correspond to junctions
already present in at least one experimental NFA. Structures
that violate valence rules, aromaticity, stereochemistry, or
charge neutrality—assessed using multiple RDKit sanitization

This journal is © The Royal Society of Chemistry and IChemE 2025
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routines—were removed. This workflow ensures that the
generative process is restricted to synthetically realistic
connectivity patterns, preventing the formation of chemically
unreasonable structures. The final step involved attaching
acceptor fragments in one of two ways: single-tag acceptors
were joined directly to the donor, while double-tag acceptors
were connected across both ends of the donor core,
completing the ADA motif. Throughout this process, the
framework used counters and dynamic data structures to
track tag usage and manage bond formation precisely. Every
assembled molecule underwent sanitization and structural
checks using RDKit to ensure chemical validity. Successful
assemblies were stored in a pandas DataFrame, with each
molecule represented by its SMILES string. The final
generative library was capped at 500000 ADA-type NFAs to
strike a balance between chemical coverage and
computational feasibility. Although the retained fragment
clusters could, in principle, produce millions to billions of
combinations, exhaustive enumeration is unnecessary and
impractical.  Instead, a  diversity-aware  stochastic
recombination scheme with a predefined stopping criterion
was used to generate a library extensive enough to robustly
sample all high-performing fragment clusters and yield
smooth  multi-objective  property distributions, while
remaining tractable for complete graph construction and
uncertainty-aware MPNN  evaluation. This procedure
generated a chemically diverse and synthetically viable
dataset of 500000 ADA-type NFA molecules (dataset-II). The
framework's modularity allows easy incorporation of new
fragments or updated connection rules, making it a flexible
tool for high-throughput molecular design in organic
electronics.

2.4 Message passing neural network with evidential learning

To predict molecular properties across a chemically diverse
library of 500000 ADA-type non-fullerene acceptors, we
employed a deep learning framework based on message
passing neural networks enhanced with evidential learning.
In this framework, each molecule was encoded as a graph,
where atoms served as nodes and bonds as edges, enabling
the model to learn from the molecular structure directly.”
This representation naturally captured atomic connectivity
and local chemical environments, providing a rich
foundation for structure-property learning. Our custom
neural architecture integrates an MPNN for feature
propagation with an evidential regression module for
uncertainty quantification. Information was exchanged
among atomic nodes over six message-passing steps—a value
empirically determined to balance prediction accuracy with
computational cost. Fewer steps yielded insufficient
structural context, while additional steps offered marginal
gains at higher computational expense. The evidential
learning component outputs four parameters per predicted
property: the predicted mean, a precision term dictating
prediction sharpness, and two gamma-distribution-derived
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shape parameters that characterize the uncertainty profile's
spread and tail behavior. This allows for confidence-aware
predictions, distinguishing between outputs of similar values
but differing reliability.

Model training was guided by a mean squared error loss
function, using the Adam optimizer’® with weight decay to
ensure robust convergence while controlling overfitting.
Mini-batch training was implemented using the Deep Graph
Library (DGL),”” which supports efficient processing of
variable-sized molecular graphs. Early stopping was applied
based on validation performance to preserve model
generalizability. Before training, SMILES-based molecular
structures were validated and converted to graph
representations with standardized atomic and bond features.
Target property values were standardized using scikit-learn's
StandardScaler, which uses a z-score transformation to
stabilize training dynamics. To optimize model performance,
we employed Optuna’® for hyperparameter tuning across
both architectural (e.g., number of hidden features, dropout
rate) and training parameters (e.g., learning rate, batch size,
number of epochs). The model evaluation relied on multiple
metrics—including RMSE, MAE, and Pearson correlation
coefficient—to assess prediction accuracy and the quality of
uncertainty estimates. This graph-based deep learning with
uncertainty-aware inference offers a robust, scalable
framework for high-throughput screening and rational design
of novel NFA candidates in optoelectronics.

2.5 Quantum chemical validation

To validate the MPNN-predicted molecular properties, we
selected 10 best-performing representative molecules from
the entire 500000 molecule library and subjected them to
quantum chemical calculations. These molecules were
defined using their SMILES strings, and their initial 3D
geometries were constructed using the MMFF94 force field
via the gen3d module in OpenBabel.”” The empirical force
field parameters were taken from the Merck Molecular Force
Field series.®*® These initial geometries were further
optimized wusing the third-order self-consistent charge
density-functional  tight-binding method (DFTB3),*>®’
combined with many-body dispersion (MBD) corrections.®* %"
Calculations were performed using DFTB+,°* interfaced via
the atomic simulation environment (ASE).”> This DFTB3-
MBD refinement provided accurate starting structures for
further optimization using Kohn-Sham density functional
theory in Gaussian 09.°* Geometry optimizations were carried
out at the B3LYP/6-31G(d,p) level of theory, followed by
frequency calculations to confirm the stability of the
stationary points. From the optimized geometries, quantum
mechanical descriptors such as energy levels (HOMO,
LUMO), electron affinity and the HOMO-LUMO gap were
extracted. To probe optoelectronic performance, we
conducted time-dependent DFT (TD-DFT) calculations using
the same functional and basis set. Excitation energies,
absorption maxima, and oscillator strengths were evaluated
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in a chloroform environment (¢ = 4.7113) using the
conductor-like polarizable continuum model (CPCM). For all
fragments, the oscillator strength and absorption maximum
were extracted from excited state 1, corresponding to the
lowest singlet excited state in the TD-DFT calculations,
ensuring consistency across the dataset. Finally, exciton
binding energies were estimated from the HOMO-LUMO gap
and the singlet excitation energy (Es) according to the
relation

Ep = AEyomo-Lumo ~ Es. (1)

3 Results and discussion
3.1 Structural characteristics of NFA fragments

We performed a detailed structural analysis of the NFA
fragment library to gain insights into the underlying
molecular architecture that governs their electronic behavior.
This analysis, summarized in Fig. 2, explores the distribution
of key structural features—rings, atoms, bonds, and electron-
withdrawing groups—across different fragment types and
offers design-relevant trends for optimizing donor and
acceptor performance. Fig. 2a presents the distribution of
ring counts across the donor fragments. Donors typically
contain a median of six rings, with aromatic rings
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dominating over aliphatic ones. This preference for
aromaticity is consistent with established principles of
organic electronics, where extended m-conjugation facilitates
charge delocalization and enhances mobility. Interestingly,
some donor structures exhibit a much higher ring count,
reaching up to 24, indicating considerable structural diversity
and suggesting that specific design strategies aim to amplify
conjugation and fine-tune electronic properties via extended
fused systems.

Fig. 2b examines atom count distributions across various
fragment types. Donor fragments show a relatively narrow
range, typically between 20 and 40 atoms, reflecting a
standardized approach to constructing electron-rich cores. In
contrast, acceptor fragments span a broader range—
extending beyond 100 atoms in some cases—highlighting the
complexity and diversity of electron-deficient architectures
required to modulate electron affinity and optical properties.
Side chains, which serve solubilizing and morphological
tuning roles, exhibit a mild bimodal distribution centered
around 10-15 atoms, likely reflecting the distinction between
linear and branched alkyl chains. Notably, extensions show a
more pronounced bimodal distribution, suggesting the
presence of two distinct classes of structural modifications
that are possibly associated with rigid versus flexible moieties.
Bonding patterns, shown in Fig. 2c, further support the
central role of aromatic systems in donor design. Donor
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fragments predominantly feature single bonds (median ~11),
with minimal contributions from double bonds outside
aromatic systems. This bond distribution implies a design
strategy that favors conformational flexibility—imparted by
single bonds—alongside electronic continuity provided by
fused aromatic cores. The limited presence of isolated double
bonds suggests an intentional avoidance of localized
electronic features in favor of delocalized conjugation.
Finally, Fig. 2d highlights trends in incorporating
electron-withdrawing groups within acceptor fragments. The
most frequent configuration includes three EWGs, followed
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by structures with two or five. This suggests that
incorporating three EWGs may represent an optimal balance
between increasing electron affinity and maintaining other
critical characteristics, such as solubility and morphological
compatibility. The reduced occurrence of acceptors with one
or four EWGs implies that such configurations may fall
outside the desirable range for tuning LUMO levels and
achieving efficient exciton dissociation.

Altogether, this fragment-level analysis underscores the
structural strategies embedded in NFA design: the dominance
of aromaticity in donor fragments to promote n-conjugation,
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Fig. 3 Unsupervised clustering analysis of molecular fragments using the elbow method, silhouette score, and Calinski-Harabasz (CH) index
across four fragment types: donor cores (a-c), acceptor units (d-f), side chains (g-i), and conjugated extensions (j-l). Each row represents a distinct
fragment class, with panels depicting inertia (left), silhouette score (middle), and CH index (right) as functions of the number of clusters k. Red
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the broad architectural flexibility of acceptors to
accommodate functional requirements, and the careful
tuning of EWG content to modulate electronic properties.
These insights are foundational design rules for the rational
development of high-performance NFAs in organic
photovoltaic applications.

3.2 Clustering analysis of fragments

Building upon the fragment-level structural insights, we
sought to uncover broader organizational patterns within
the molecular space by performing an unsupervised
clustering analysis. To systematically classify the diverse set
of donor, acceptor, and side chain fragments, we employed
three complementary clustering validation techniques: the
elbow method,” silhouette analysis, and the Calinski-
Harabasz (CH) index. Together, these methods offer a
statistically grounded approach to identifying the optimal
number of clusters, enabling us to capture underlying
structural similarities and diversity across the fragment
population.

Donor. Fig. 3a—c presents the clustering analysis of donor
fragments, offering insight into their underlying structural
organization using three different statistical methods. Fig. 3a
shows the elbow method, which helps determine the optimal
number of clusters by plotting the within-cluster sum of
squares (inertia) against different values of k (number of
clusters). A noticeable drop in inertia is seen from k = 2 to k
= 3 (from about 180 to 145). This “elbow” at k = 3, marked
with a red line, suggests that adding more clusters beyond
this point does not significantly improve the clustering, as
the reduction in variance becomes marginal. This implies
that three clusters may be suitable for capturing most of the
structure in the donor fragment space. Fig. 3b provides
silhouette analysis, which evaluates how well each molecule
fits within its assigned cluster. The silhouette score starts at
about 0.39 for k = 2, reaches a peak around 0.42 for k = 4,
then drops sharply to about 0.22 at k = 6, and remains
relatively low beyond that. This pattern suggests that
clustering into 3 or 4 groups gives the most apparent
separation and internal consistency, while larger clusters may
not meaningfully represent the data.

Fig. 3c presents the Calinski-Harabasz index, which
compares the spread between clusters to the spread within
them. This score is highest at £ = 2, with a value around 24,
and then decreases steadily, leveling off near 17 for k > 6.
This supports a primary division into two major groups,
though the decline after k£ = 2 also suggests some structural
subgroups may exist within this broader classification. These
results indicate that donor fragments naturally form a few
well-defined clusters—most notably two main groups, which
can be further refined into three or four subgroups. The
agreement across different methods highlights that, despite
the structural diversity of donor fragments, their design
space can be effectively organized into a small number of
meaningful categories.
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Acceptor. Fig. 3d-f show the clustering results for acceptor
fragments, revealing distinct structural patterns within this
molecular class. In Fig. 3d, the curve starts around 195 units
at k = 2 and shows an apparent elbow at k = 3, indicating a
sharp drop in the inertia of about 26%. Beyond this point,
the curve flattens, suggesting that increasing the number of
clusters adds limited value. This elbow suggests that acceptor
fragments can be meaningfully grouped into three major
types—likely corresponding to rylene diimides,
benzothiadiazole, and cyano-based motifs, as commonly
reported in the literature.’*® The silhouette score (Fig. 3e)
peaks at around 0.405 for k = 2, then declines steadily,
reaching about 0.36 at k = 4 and dropping further to 0.29 at k
= 5. This trend suggests that a two-cluster classification best
captures the internal consistency and separation of acceptor
fragments, with further divisions providing a less meaningful
structure. Fig. 3f displays the CH index, supporting this
observation. The CH score reaches its highest value of about
26.5 at k = 2, confirming the strong distinction between the
two primary groups. While there is a smaller secondary peak
near k = 4, the decline beyond this point suggests limited
benefit from additional clusters. Together, these analyses
indicate that acceptor fragments have a clear and hierarchical
structure: a strong initial division into two groups, with
possible further separation into three or four subtypes.

Side chains. The third row (Fig. 3g-i) explores the
clustering of side chain fragments, highlighting how these
flexible units organize structurally. In Fig. 3g, the elbow
method shows inertia values decreasing sharply from around
175 at k = 2 to about 95 at k = 5, suggesting the presence of
key structural differences among side chains. Beyond this,
the curve flattens and gradually drops to around 40 at k = 10,
indicating limited benefits from further subdivision. Fig. 3h
presents the silhouette analysis, which peaks at k£ = 2 with a
score of roughly 0.39, pointing to a strong binary grouping.
However, it drops sharply at k = 3 before rising again,
reaching a secondary peak of around 0.35 at k = 7. This
bimodal trend suggests a two-level structure: an initial broad
division followed by finer subcategories, likely reflecting
variations in flexibility, polarity, or branching. Fig. 3i shows
the CH index, which also peaks at k = 2 with a value of 25.5,
confirming the primary split. After an initial drop, the CH
score increases steadily from k = 5 to k = 10, reaching about
21.7, suggesting the presence of nested subgroups. These
results point to a hierarchical organization within side chain
fragments—dominated by a major bifurcation and enriched
by additional subtypes. The binary classification may suffice
for many design applications, capturing dominant
conformational or functional differences. However, the
gradual evolution in clustering quality at higher k values
supports a more detailed exploration when needed.

Conjugated extension. Fig. 3j-1 focus on conjugated
extension fragments, revealing a different and more complex
organizational behavior. Fig. 3j, showing the elbow method,
identifies a sharp drop in inertia from about 138 at k = 2 to
95 at k = 3, suggesting two dominant structural types. Beyond
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this, the curve declines steadily to about 20 at k£ = 10,
indicating a gradual refinement of substructures.
Interestingly, Fig. 3k shows that the silhouette score behaves
differently than other fragment types. Rather than peaking
early, the score steadily increases from k = 2 to a maximum
of around 0.40 at k = 9, indicating that finer clustering better
captures the subtle structural and electronic features of
extension units. Fig. 31 further supports this trend, as the CH
index also increases consistently, peaking at about 25 near k
= 9. A noticeable jump between k = 6 and k = 7 suggests a
shift to more distinct subgroups, possibly due to variations
in conjugation length or substitution patterns. While the
elbow method hints at a basic two-cluster division, the
silhouette, and CH analyses reveal a more subtle picture. The
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gradual increase in clustering quality points to overlapping
structural motifs and a continuum of conjugation effects
rather than sharply separated classes. This suggests that
extension fragments are best understood through a multi-
cluster perspective, where each group reflects distinct
conjugation patterns or functional modifications.

3.3 Principal component and explained variance analysis

We employed principal component analysis with k-means
clustering to reveal structure-property relationships and
uncover distinct molecular architectures within the NFA
design space. PCA was first applied for dimensionality
reduction, and the cumulative explained variance plot (Fig. 4)
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Fig. 4 Principal component analysis (PCA) of molecular fragments used non-fullerene acceptors: (a and b) donor fragments; (c and d) acceptor
fragments; (e and f) side-chain fragments; (g and h) conjugated extension fragments. Left panels (a, c, €, g) show the explained variance ratios of
the top seven principal components, with elbow points indicating optimal dimensionality thresholds. Right panels (b, d, f, h) display 2D PCA
projections along the first two principal components, colored by k-means clustering (k = 3), revealing distinct groupings with interpretable

variations in optoelectronic and excitonic properties.
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highlights a non-linear accumulation of variance across the
first seven principal components, indicating a complex
distribution of information across dimensions. To identify
the optimal number of components and clusters, we used the
KneeLocator algorithm from the kneed package.”® This
method detects the “elbow” point in a curve—where
additional components or clusters contribute marginal gains
—by analyzing deviations from a baseline connecting the
endpoints. The algorithm identifies the point of maximum
curvature by normalizing input data and computing point-
wise distances from this baseline. Parameters such as
sensitivity (S = 1.0), curve shape (“concave”), and direction
(“increasing™) improve its flexibility across data types. Its
automation and robustness make it well-suited for selecting
optimal model complexity without manual tuning.

The two-dimensional PCA projection (Fig. 4) condenses
the seven-dimensional property space into a more
interpretable form, aiding the visualization of fragment
distributions and their potential grouping. However, while
PCA supports visual insight, k-means clustering was
performed in the whole seven-dimensional property space—
comprising properties such as AEgomo-rumos AErumos Eb,
Jmaxs @20, f, and EA—to retain the complete molecular feature
set during clustering. This analysis balances interpretability
with data fidelity by combining PCA for dimensionality
awareness with k-means clustering on the entire property
space.

Donor fragments. For donor fragments, the first principal
component (PC1) captures 48% of the total variance (Fig. 4a
and Table S1), primarily influenced by the HOMO-LUMO gap
(AExomo-Lumo), exciton binding energy (E}), and LUMO offset
(AErumo)- These descriptors are closely interrelated, reflecting
the strong coupling between frontier orbital energies and
exciton-binding characteristics. The explained variance
increases sharply from 48% to 86% across the first three
components, after which it levels off—indicating that donor
fragments occupy a relatively low-dimensional property
space. The elbow point at component three highlights the
optimal threshold for dimensionality reduction. The two-
dimensional PCA projection (Fig. 4b), overlaid with k-means
clustering (k = 3), reveals three well-separated donor fragment
clusters. The horizontal axis (PC1) is dominated by the
HOMO-LUMO gap (AEgomo-rumo, 0.5121) with significant
input from exciton binding energy (Ep, 0.3532) and a smaller
contribution from LUMO offset (AEyymo, 0.0845), spanning
roughly -3 to +5 standardized units. The vertical axis (PC2) is
shaped by exciton binding energy (E,, 0.5214), quadrupole
moment (Q,, 0.4980), and oscillator strength (f, 0.4877),
ranging from -3 to +2 units and thus encoding the balance
between exciton stability, charge-distribution anisotropy, and
light-absorption strength. Cluster 2 (yellow) emerges as
particularly promising: it encompasses a broad yet cohesive
group of fragments located in the moderate PC1 region,
exhibiting intermediate AExomo-rumo and AEpymo, and a
moderate-to-high PC2 region characterized by reduced Ej
alongside substantial Q,, and f; indicating fragments with
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tunable bandgaps, efficient exciton dissociation, strong
transition dipoles, and favorable charge-distribution profiles
—all traits that support efficient charge separation and
robust light absorption. In contrast, cluster 0 (violet) is more
spatially dispersed across both components, suggesting a mix
of outliers with extreme AEyomo-rumo (very wide gaps), high
Ep, or misaligned optical versus electronic characteristics.
These may include unusual or specialized donors that either
push novel design boundaries or fall outside the main
performance envelope. Finally, cluster 1 (teal)—comprising
only two tightly grouped points—reflects highly uniform
fragments with narrow variance in AExomo-rumos Eby Q20
and f; implying rigid, possibly over-engineered donor motifs
with limited structural diversity and generalizability. The
high cumulative variance captured within the first four
components (over 90%) further validates the robustness of
the chosen descriptors and the effectiveness of the
dimensionality reduction approach.

Acceptor fragments. Following the donor fragment
analysis, we performed PCA on the acceptor fragments to
explore their underlying property space (Fig. 4c and Table
S2). The first principal component (PC1) accounts for 53.6%
of the total variance and is primarily governed by the
HOMO-LUMO gap, exciton binding energy, and LUMO
offset. These interrelated descriptors highlight the coupling
between frontier orbital alignment and exciton stability—key
to acceptor functionality. As with donors, the variance rapidly
accumulates across the first few components, reaching 86.0%
by PC3, indicating that the acceptor space is similarly low-
dimensional and defined by a few dominant electronic and
optical properties. The two-dimensional PCA projection
(Fig. 4d), overlaid with k-means clustering (k = 3), reveals
three clear fragment clusters. Cluster 0 (violet), located at low
PC1 and near-neutral PC2, includes fragments with narrow
AEyomo-rLumo, low Ep, and moderate AE;ymo—traits that
favor efficient exciton dissociation, strong electron-accepting
behavior, and favorable energy level alignment. Cluster 2
(vellow) shows moderate AEyomo-rumo and Ep, with a wider
PC2 spread due to varied AEpymo, suggesting tunable
acceptors that require careful optimization. Cluster 1 (teal) is
the most dispersed, with high AEygomo-Lumo and Ep,, and
highly variable AEpymo, indicating structural outliers that
may be less effective for general exciton dissociation but
potentially useful in niche roles.

Side chain fragments. PCA was applied to the side-chain
fragment space to identify key variations among descriptors
(Fig. 4e and Table S3). The first principal component (PC1)
explains 54.7% of the variance and is dominated by electron
affinity, Amax, and Q, reflecting the importance of frontier
orbital energetics, optical absorption, and charge
distribution. The variance captured rises sharply to 86.0%
by the third component, beyond which additional
components contribute minimally—indicating a low-
dimensional descriptor space for side chains. A two-
dimensional PCA projection (Fig. 4f), colored by k-means
clusters (k = 3), reveals three distinct fragment groups.
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Cluster 2 (yellow) occupies the moderate-to-high regions of
both PC1 and PC2, comprising fragments with higher EA,
red-shifted absorption, moderate Q,o, and elevated Ey, f,
and AEhomo-Lumo—Ssuggesting strong optical activity and
electron affinity, though potentially higher exciton binding.
Cluster 0 (violet) shows a widespread along PCl—reflecting
variation in EA, /., and Q,p—but remains relatively tightly
grouped at low PC2, marked by low Ey, f, and AEgomo-rLumo-
This indicates a heterogeneous set of fragments with
favorable exciton dissociation and narrow bandgaps, though
lower emission probability. Cluster 1 (teal) is mainly located
at low PCl1—indicative of lower EA, blue-shifted absorption,
and smaller Q,,—but spans a broad PC2 range, revealing
exciton binding, oscillator strength, and bandgap variability.
These fragments are weakly electron-withdrawing but exhibit
diverse effects on optoelectronic behavior depending on
molecular context.

Conjugated extension fragments. PCA was applied to the
conjugated extension fragment space to identify orthogonal
directions of variance and capture key structure-property
relationships (Fig. 4g, Table S4). The first principal
component (PC1) explains 56.6% of the variance, primarily
influenced by AExomo-rumos AErumo, and Ep, underscoring
their strong coupling. Including PC2 and PC3 raises the
cumulative variance to 73.9% and 85.5%, respectively, and
93.0% with the first four components—beyond which the
variance plateaus. This suggests that the conjugated
extension space lies in a relatively low-dimensional manifold.
The elbow point at PC4 supports this as a threshold for
dimensionality reduction. The 2D PCA projection (Fig. 4h),
combined with k = 3 clustering, reveals three distinct
fragment clusters. While the elbow appears at PC4, a
3-cluster solution was adopted for consistency across
fragment types and is justified by the 85.5% variance
explained by the first three PCs. These components offer
chemically interpretable insight into the design space
without overcomplicating analysis. PC1 primarily encodes

View Article Online

Paper

variations in AEyomo-rumo, AErumo, and Ep while PC2 is
shaped by Ey, f, and Q,,. Cluster 0 (violet) spans moderate-to-
high PC1 with dispersion along PC2. Fragments with
moderate PC1 and lower PC2 (i.e., reduced Ey,) are promising,
offering narrow bandgaps and favorable exciton dissociation.
The widespread suggests structural or electronic diversity,
including some potential outliers. Cluster 2 (yellow) occupies
low-to-moderate PC1 and is widely distributed along PC2.
These fragments exhibit low AEyomo-rumo and AEpumo but
diverse Ey, f, and Q,o—likely stemming from differences in
conjugation or substitution—making them well-suited for
tuning specific optoelectronic properties. Cluster 1 (teal)
forms a compact group at low PC1 and moderate-to-high
PC2, comprising low-bandgap fragments with moderate Ey,
strong optical activity, and consistent Q,o. These structures
are promising scaffolds for efficient light harvesting and
controlled exciton separation—especially if E,, is further
optimized. In sum, the high explained variance (93.0% in
four PCs) affirms the validity of PCA for describing the
conjugated extension design space, supporting data-driven
fragment selection.

3.4 Parallel coordinates analysis of molecular fragments

To complement the PCA-based dimensionality reduction and
clustering, we employed parallel coordinates plots (PCPs) to
unravel the complex, multidimensional property space
associated with the four components of ADA-type NFAs—
donors, acceptors, side chains, and conjugated extensions.
PCPs are especially well-suited for high-dimensional chemical
data, offering a visually intuitive yet rigorous framework for
observing correlations, trade-offs, and fragment-level design
motifs across multiple properties. In these plots, each vertical
axis represents a molecular descriptor (e.g., AErumo, Eb, f),
and each line traces the standardized (z-scored) property
profile of an individual fragment. Consistent patterns of line
bundling signify clusters with shared property signatures,

S

~ <
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—— Cluster 0
—— Cluster 1
Cluster 2

AErLumo Ey, Amax

A EHoMO-LUMO Q2 f EA

Fig. 5 Parallel coordinates plot representing the distribution of key optoelectronic properties across donor fragments in the ADA-type non-
fullerene acceptor dataset. Each line corresponds to an individual donor fragment, and properties are standardized (z-scores) for comparison
across different scales. Distinct clusters are highlighted in color, revealing characteristic property patterns and interdependencies. This visualization
facilitates the identification of high-performing donor motifs for rational molecular design.
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while crossings and divergences denote
interactions or performance trade-offs.

Across all four fragment classes, PCPs reveal three
consistently recurring clusters, each encoding distinct
electronic behaviors. For donor fragments, the clusters span
a range of energy level alignments and excitonic behaviors
(Fig. 5). The yellow cluster exhibits slightly elevated AE; o,
strong oscillator strength, and high EA, with moderately low
Ey, and AEpomo-Lumo—suggesting good charge-transfer
characteristics and strong light absorption. The purple
cluster, in contrast, features higher AEyomo-rumo and Ep, with
diminished EA and f, indicating inefficient exciton
dissociation and weak absorption. The teal cluster displays
low AE; ymo and AEpomo-rumo With red-shifted A, but
suffers from low f and EA, pointing to potentially useful
bandgap alignment but reduced optical activity. In acceptors,
the clusters are even more sharply differentiated, as seen in
Fig. S1. The purple cluster stands out with low AEgomo-Lumo,
high f and EA, and red-shifted absorption—an ideal
combination for efficient light harvesting and charge
separation. The yellow cluster represents an intermediate
regime with broader variation in AEpomo-rumo and f,
suggesting tunability but with less consistent performance.
Meanwhile, the teal cluster shows elevated AEyomo-Lumo and
E, along with suppressed f, EA, and A, making it poorly
suited for acceptor applications.

Though often viewed as peripheral, side chains exhibit
meaningful property differentiation. As seen in Fig. S2, the
yellow cluster shows a somewhat compact distribution with
favorable A,.y, moderate to low Eyp, and strong EA, f, and Qyo
—highlighting their potential for enhancing light absorption
and charge distribution. The purple cluster shows moderate-
to-low Ep, red-shifted Aax, and variable EA, but with lower f
and Q,o, suggesting weaker emission probability. The teal
cluster, by contrast, shows largely unfavorable traits: high
AEhomo-Lumo, €levated Ep, and poor absorption metrics. The
conjugated extensions profile is displayed on Fig. S3. The teal
cluster demonstrates low AE;ymo and AEgomo-rumo, high EA
and f; and red-shifted Ap.c—traits highly desirable for
promoting exciton splitting and photon harvesting. The
purple cluster exhibits the opposite—large AEgomo-Lumos
blue-shifted absorption, and poor f and EA—indicating weak
optoelectronic performance. The yellow cluster occupies an
intermediate zone with moderate dispersion, suggesting a
flexible design space where careful tuning could yield
optimized properties.

Collectively, PCPs underscore several key cross-cutting
trends: (i) an inverse correlation between AEyomo-Lumo and
Jmax 1S consistent across fragment types; (ii) electron affinity
and oscillator strength show cluster-specific synergies that
can be exploited to tune light-harvesting and charge-transfer
performance; and (iii) E, and f often operate in tension,
particularly in side chains and conjugated extensions,
reinforcing the trade-off between strong exciton binding and
optical activity. These analyses provide a chemically
interpretable view of how fragment-level variations map onto
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global performance metrics in NFAs. By identifying high-
performing fragment clusters—such as the yellow cluster in
acceptors and the teal cluster in conjugated extensions—we
establish robust design principles for constructing next-
generation NFA materials. The most promising fragment
clusters identified vie PCA and PCP were subsequently
recombined using the generative protocol outlined in section
2.3. Although our starting set comprises 257 experimentally
reported ADA-type NFAs, these molecules were selected to
cover all major acceptor families and structural motifs.
Automated fragmentation yields several thousand donor,
acceptor, extension, and side-chain fragments, each
annotated with seven quantum-chemical descriptors.
Clustering in this descriptor space reveals that the resulting
fragment manifold encompasses the experimentally relevant
optoelectronic landscape, allowing for the construction of a
500 000-member library of synthetically plausible NFAs under
strict connectivity constraints. This fragment-rich and
physically informed representation provides a statistically
robust foundation for uncertainty-aware ML screening
despite the modest size of the original whole-molecule
dataset.

3.5 Evidential MPNN for molecular screening

Although the initial model development began with seven
quantum mechanical descriptors, a refined subset of four—
oscillator strength (f), maximum absorption wavelength
(Amax), LUMO energy-level difference (AEpymo), and exciton
binding energy (E,)—was ultimately retained based on their
relevance and learnability. Among these, f and A,.x are traits
ideally maximized for enhanced light absorption and
efficient charge generation, whereas AFjymo and Ep, are
preferably minimized to facilitate electron transfer and
exciton dissociation, respectively. This handpicked selection
balances physical insight and model interpretability,
enabling a rational screening framework aligned with device
performance requirements.

MPNN with evidential learning demonstrates robust
predictive performance across these properties, validated
using the newly generated diverse library of 500000 NFAs.
An in-depth analysis of property-specific learning dynamics
reveals convergence patterns that reflect the complexity of
their underlying physical principles. For instance,
predictions of AEyymo converge within 110 epochs, with
modest oscillations in training loss before settling between
0.2-0.4 (Fig. 6a). E,, being more complex, exhibits early
volatility with training losses spiking up to 1.6, gradually
stabilizing near 0.4-0.5 after 250 epochs, while test losses
remain lower at ~0.2, indicating a challenging but
generalizable learning landscape (Fig. 6b). In contrast, f
exhibits rapid convergence within 65 epochs, with final
training and test losses reaching ~0.13-0.15 and ~0.17-0.20,
respectively, highlighting the strong structure-property
correlation and high learnability (Fig. 6¢). Amax demonstrates
intermediate convergence behavior, requiring around 120
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Fig. 6 Training and test loss profiles for the four selected molecular properties: (@) AE ymo, (b) Ep, (c) f, and (d) Amax. The convergence behaviors
reflect the relative complexity and learnability of each property, with varying epochs required for stabilization.

epochs to stabilize, with training and test losses of ~0.2 and
~0.4-0.5, respectively (Fig. 6d).

These convergence profiles reflect three common phases
across all properties: (1) rapid early learning with sharp loss
reduction, (2) property-specific stabilization phases, and (3)
final convergence with consistent generalization gaps. The
varying training durations (65-250 epochs) and final loss
values map coherently onto the complexity hierarchy of the
properties, with E, being most intricate and f the most
tractable. The strong generalization performance and
absence of overfitting across tasks underscore the
effectiveness of our model architecture—featuring six
message-passing steps, Set2Set read-out for global feature
aggregation, dropout regularization, LayerNorm, and early
stopping. The integration of evidential learning further
enhances reliability through uncertainty quantification. The
model achieves low RMSEs, particularly for Ey, (0.03 eV) and
AErumo (0.17 eV), affirming its ability to capture intricate
quantum-mechanical phenomena. These results collectively
establish the MPNN's robustness and scalability for high-
throughput, uncertainty-aware screening in molecular
optoelectronics.

The model's performance metrics on the test set,
summarized in Table 1, confirm its robust predictive power
across all target properties relevant to organic solar cell
design. Complementary metrics for the training set are

This journal is © The Royal Society of Chemistry and IChemE 2025

summarized in Table S5. Pearson correlation coefficients
range from 0.838 to 0.926, indicating strong agreement
between predicted and reference values. Among these,
oscillator strength predictions stand out with the highest
correlation coefficient of 0.926, along with a low RMSE of
0.438 and MAE of 0.330 (Fig. 7c), highlighting the model's
ability to capture the quantum-mechanical characteristics of
electronic transitions—critical for identifying efficient light-
harvesting materials. The AE;ymo, 2 key metric influencing
charge-transfer dynamics, is predicted with a Pearson r of
0.838, RMSE of 0.170 eV, and an impressively low MAE of
0.099 eV (Fig. 7a). Predictions for maximum absorption
wavelength also demonstrate strong reliability, with r = 0.841
and RMSE of 48.64 nm (Fig. 7d), despite the inherent
complexity of excited-state transitions. Furthermore, Ej is
predicted with high precision, yielding r = 0.858, RMSE of

Table 1 Performance metrics (RMSE, MAE, and Pearson correlation
coefficient r) for predicting key optoelectronic properties—LUMO offset
(AE ymo), maximum absorption wavelength (1may), oscillator strength (f),
and exciton binding energy (E,)—on the test set using the evidential
MPNN model

Metrics AELUMO jbmax f Eb

RMSE 0.170 48.64 0.438 0.030
MAE 0.099 34.51 0.330 0.019
Pearson r 0.838 0.841 0.926 0.858

Mol. Syst. Des. Eng.


https://doi.org/10.1039/d5me00182j

Published on 08 December 2025. Downloaded on 12/18/2025 11:03:09 AM.

Paper
1.75 (a) @ Gradient Boosting
—— Linear Regression
1.50
[©)
1.25
— 1.00
=
2,
2
Eé 0.75
&)
T 050
0.25
0.00
~0.2 L
0.25 G 7
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6
AETo [eV]
4
(c) @  Gradient Boosting
—— Linear Regression
3
o 2
=
1
0
‘ . . . o 2
0.0 0.5 1.0 1.5 2.0 2.5 3.0

foxp

View Article Online

MSDE
0.55 (b) @ Gradient Bo@ting
—— Linear Regression
0.501 ()
0.451
= 0.401
L
&Y 0.351
0.301
0.251
0.20
0.2 04 0.6
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
B [oV]
(d) @ Gradient Boosting
9004 —— Linear Regression
800 1
£ 700
%4
SH
=
600
500
5001
4001 . , . , 600 800
500 550 600 650 700 750 800 850

A [nm)]

Fig. 7 MPNN models: the plots of predicted properties versus their actual values, along with the trained function for both training (inset) and
testing steps, illustrate the model's performance across various solar cell properties - (a) AE ymo (b) Ep, (c) f, and (d) /max. Shaded regions around
the best-fitted line depict the 95% confidence interval, offering a visual representation of prediction certainty.

0.030 eV, and MAE of 0.019 eV (Fig. 7b), emphasizing the
model's sensitivity to fine electronic interactions that govern
charge-separation efficiency in OSCs.

Beyond predictive performance, the model significantly
enhances high-throughput virtual screening by enabling
multi-property  predictions relevant to
molecular design. Its integration of evidential learning not
only provides accurate property estimation but also
quantifies uncertainty—an essential feature for guiding
experimental prioritization. The particularly low RMSEs for
Ey, and AEpymo reflect the model's subtle understanding of
quantum-level interactions, while its consistent performance
across all properties demonstrates effective extraction of both
atomic- and molecular-scale features. Collectively, these
strengths position the evidential MPNN as a robust,

simultaneous
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generalizable, and data-efficient framework for rational
discovery of next-generation organic photovoltaic materials.

3.6 Design-space compression and enrichment

Our methodology for designing novel ADA-type non-fullerene
acceptors offers a systematic and highly effective route to
achieving targeted optoelectronic properties, marking a
significant advancement in data-driven materials discovery.
By integrating automated molecular fragmentation and
structural classification with advanced data analysis—such as
clustering and PCA on key descriptors—we identify molecular
fragments and connectivity motifs associated with optimal
performance, as visualized through 2D PCA and parallel
coordinates. A tagging-based combinatorial assembly then

This journal is © The Royal Society of Chemistry and IChemE 2025
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leverages these insights to construct a diverse library of
500 000 new NFA candidates.

The impact of this fragment-based design strategy
becomes clear when comparing the property distributions of
our computational library with those of experimentally
reported molecules used as the training data. A key challenge
in high-performance NFA discovery lies in simultaneously
optimizing multiple, often competing, electronic properties.
Our approach addresses this by coupling intelligent fragment
clustering with systematic recombination of high-performing
motifs, thereby accessing previously unexplored regions of
chemical-property space and significantly broadening the
landscape of optimal candidates. Our multi-objective
screening strategy is guided by established design principles
for high-performing NFAs: (i) minimizing exciton binding
energy E, to reduce the Coulomb barrier for charge
separation,'® (ii) minimizing AE ymo to provide a dense
manifold of low-lying CT states that accelerates exciton
dissociation,'”"'* and (iii) maximizing oscillator strength f
and selecting favorable, red-shifted 1.« values to enhance
light harvesting and reduce non-radiative voltage losses.*”
These criteria collectively capture the key electronic and
optical features known to govern efficient charge generation
and high photovoltaic performance in NFA-based OPVs. The
contrast in performance metrics exemplifies this: while only
three molecules in the training set meet all critical
thresholds—AE uymo < 0.25 eV, E, < 0.32 eV, and f > 1.5
(Fig. 8a)—our design framework identifies 4812 such
candidates, representing an extraordinary = 1600-fold
enrichment (Fig. 8b). In both panels of Fig. 8, the color bar
encodes the oscillator strength (f) associated with each
molecule, providing a third dimension to the AEpumo—Eb
scatter plots. Warmer colors correspond to larger f values,
allowing direct visualization of how the generated NFA library
becomes enriched in candidates that simultaneously exhibit
low AErumo, low Ep, and high oscillator strength. This
achievement is particularly notable because each parameter
governs key aspects of photovoltaic performance: a small
LUMO-LUMO+1 gap (AErymo) Known to facilitate exciton

0.0 0.5 1.0 1.5

View Article Online
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dissociation at the donor-acceptor (D/A) interface, owing to
the presence of multiple electron-accepting states in the
anionic form;'"'%*'%* low exciton binding energy (Ey)
enables efficient charge separation;'*>'*® and high oscillator
strength (f) ensures strong light absorption and radiative
efficiency.’®* %% To prevent arbitrary filtering, we anchored
the screening thresholds to both the statistics of dataset-I
and established design rules in the literature. The highest-
performing experimental NFAs cluster around AEyyymo = 0.2-
0.3 eV and Ep, = 0.25-0.35 eV, with strong transitions f > 1.5.
These regions also correspond to the most enriched zones
after fragment recombination and MPNN prediction. Prior
studies similarly identify AE;ymo < 0.3 eV and E, < 0.3 eV as
key markers of efficient charge separation in high-PCE
NFAs, 07193199 \hile strong absorbers typically exhibit f >
1.5.*° Accordingly, we selected AE;ypo < 0.25 eV, By, < 0.32
eV, and f = 1.5 as balanced, literature-consistent thresholds
that retain chemically diverse yet optoelectronically
competitive candidates.

Our pipeline not only increases the proportion of “triple-
hit” candidates (AE ymo < 0.25 eV, E, < 0.32 eV, f = 1.5) by
more than 1600-fold but also reshapes the entire property
landscape to align with the narrow corridor required by state-
of-the-art NFAs. Kernel-density overlays in Fig. 9 illustrate this
convergence: the experimentally measured AF ymo
distribution (0-1.6 eV) collapses to =0.30 eV, targeting the
<0.4 eV limit that minimizes non-radiative losses; measured
E}, values (0.25-0.60 eV) concentrate around ~0.32 eV, close
to the =0.30 eV threshold for efficient free-charge generation;
the absorption maximum (4. shifts from 680 nm to a
dominant 750-800 nm region, entering the NIR window
desirable for tandem and semi-transparent devices; and the
low-f tail (<1), which limits photocurrent in the training set,
is replaced by a mode at f = 2.2, consistent with design
targets for high Jsc.

This sharpening of property distributions arises from the
synergy between (i) chemically intuitive fragment
recombination—guided by PCA-validated clusters that
capture favorable donor-acceptor interactions—and (ii) an

01 02 03 04 05
AESo

Fig. 8 Scatter plots showing the distribution of three key optoelectronic properties—AE| ymo, En, and f—in (a) the experimental/training dataset
and (b) the generative model's library of 500 000 NFAs. The enriched population in panel (b) highlights the model's ability to discover candidates
satisfying all critical thresholds (AE, ymo < 0.25 eV, E, < 0.32 eV, and f > 1.5), reflecting a dramatic expansion of the optimal property space.
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Fig. 9 Kernel-density estimates comparing the distributions of key optoelectronic properties in the experimentally measured dataset (blue) versus
the predicted molecular library (orange). Panels illustrate the dramatic sharpening and targeted shifts in (a) LUMO-LUMO+1 gap (AE_ umo). (b)
exciton binding energy (Ey), (c) oscillator strength (f), and (d) absorption maximum (,a), highlighting convergence toward optimal values for

high-performance NFA design.

evidentialMPNN  fitness function that incorporates
uncertainty-aware prediction while steering optimization
toward literature-derived targets for AEyumo, Eby Amax, and f.
By simultaneously compressing the distributions of four
orthogonal descriptors, our framework outperforms prior
machine-learning-based screens, which typically focus on one
or two properties.®”''® Rather than identifying isolated
optima, our method re-engineers the full statistical
distribution, transforming a sparse experimental space into a
densely  populated, application-ready domain and
establishing a new benchmark for rational NFA discovery.
Further analysis shows that this approach not only saturates
the optimal region with unprecedented density but also
broadens the accessible wavelength range into the near-
infrared (Amax = 750-800 nm), crucial for panchromatic
harvesting in next-generation photovoltaics. The concurrent
narrowing of the E, distribution (~0.32 eV) and the
abundance of high-f molecules creates a synergistic effect,
directly enhancing charge-generation efficiency and reducing
recombination losses—key factors in surpassing the 20%
power-conversion efficiency milestone in organic solar cells.
What makes this achievement especially significant is that
our fragment-based design framework preserves synthetic
accessibility while enabling exploration of an expanded
optoelectronic  property space, thereby bridging the
longstanding gap between in silico prediction and experimental
realization. Recent ML frameworks for OPV design have

Mol. Syst. Des. Eng.

increasingly adopted fragment- or unit-based
representations,”””" reflecting a shift toward interpretable and
composition-aware molecular design. Building on this
direction, our approach introduces automated, chemically
meaningful fragmentation of experimentally reported ADA-

type NFAs, quantum-chemically informed fragment
descriptors, descriptor-space  clustering, and strictly
constrained recombination governed by tag-encoded

connectivity rules. Coupled with an wuncertainty-aware
message-passing neural network for multi-objective prediction,
this framework offers a systematic and synthetically grounded
route for navigating NFA chemical space, complementing and
extending existing fragment-based ML strategies. The
integration of evidential uncertainty quantification ensures
confident candidate selection, while the modular assembly
enforces chemical realism through experimentally validated
connectivity patterns. Together, these elements—synthetic
viability, predictive confidence, and interpretable property
optimization—establish our methodology as a powerful and
generalizable tool for accelerating the discovery of next-
generation organic optoelectronic materials.

3.7 Benchmarking against existing fragment-based and ML
frameworks

To place our results in context, we compare our
methodology with prior fragment-driven and ML-assisted

This journal is © The Royal Society of Chemistry and IChemE 2025
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frameworks for designing NFAs. Earlier studies, such as the
fragment-fingerprint and unit-library approaches by Zhang
et al. and Cao et al., as well as GA/LSTM-based fragment
recombination pipelines, have demonstrated the value of
decomposing OSC materials into reusable building
units.”®”> However, these methods generally rely on
manually picked out donor/acceptor subunits, structural
fingerprints, or one-hot fragment encodings, and typically
optimize a single scalar metric such as PCE or frontier
orbital energies. Moreover, most existing recombination
schemes assemble D-n-A or A;-D-A, motifs without
imposing chemically rigorous connectivity constraints or
integrating quantum-chemical fragment properties, thereby
limiting their generalizability across chemical families. In
contrast, our workflow begins with fully automated,
chemically meaningful fragmentation of 257 experimentally
realized ADA-type NFAs, preserving exact connectivity and
classifying fragments into donor cores, acceptor units,
conjugated extensions, and side chains. Each fragment is
characterized by seven quantum-chemical optoelectronic
descriptors, enabling a physics-grounded representation
rather than a purely symbolic one. Sections 3.2-3.4 show
that, unlike earlier methods that cluster fragments using
structural heuristics or topological fingerprints, we perform
PCA-assisted k-means clustering in this quantum-chemical
descriptor space to identify fragment families with jointly
favorable optoelectronic profiles. Only fragments from these
optimal clusters are recombined, and assembly is strictly
governed by chemically informed tag-derived rules. SMILES

View Article Online
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validation, charge/valence checks, and RDKit sanitization
ensure structural viability throughout, producing an
extensive yet chemically coherent library of 500000 ADA-
type NFAs. Finally, section 3.5, 3.6 and this section
compares our evidential message-passing neural network
with prior single-target ML models used in fragment-based
OSC design. In the screening stage, numerical thresholds
were introduced to identify NFAs whose predicted properties
fall within a physically and statistically justified optimal
regime. Analysis of the 257 experimentally reported NFAs
(dataset-I) shows that the highest-performing molecules
cluster around AE;uymo = 0.2-0.3 €V, E, = 0.25-0.35 €V, and
oscillator strengths f = 1.5. These regions are well
supported by OPV design principles that associate small
AE;umo and Ey, with favorable charge-separation energetics
and large f with strong light harvesting.*>'%°1%>1%° Based
on these trends, and allowing for the residual prediction
error of the evidential MPNN, we adopt conservative
thresholds of AEjymo < 0.25 €V, Ep, < 0.32 eV, and f > 1.5.
These criteria are applied only after recombination and
prediction, ensuring that the final set of candidates reflects
both the statistical structure of dataset-I and established
physical considerations relevant to high-efficiency NFAs. Our
uncertainty-aware GNN jointly predicts AEpymo, Eb, f, and
Jmax, Providing multi-objective, physics-guided prioritization
and achieving an enrichment of high-performing candidates
greater than  1600-fold. Together, these elements
demonstrate that our integrated framework delivers a
substantially more rigorous, physically informed, and

MOL7

MOL8

MOL9 MOL10

Fig. 10 Molecular structures of the top-performing non-fullerene acceptors identified through our fragmentation-recombination and ML-assisted

screening workflow.
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Table 2 Comparison of DFT-calculated and MPNN-predicted optoelectronic properties—oscillator strength (f), LUMO energy offset (AE ymo).
maximum absorption wavelength (1nax)., and exciton binding energy (E,)—for 10 selected high-performing molecules. The table also summarizes

prediction accuracy using RMSE, MAE, and maximum absolute error (MaxAE) metrics

Molecule £ £ MBS0 ABuo e Ak, BT By
MOL1 2.33 2.21 0.207 0.249 783.9 804.4 0.344 0.317
MOL2 2.84 2.22 0.251 0.232 777.6 796.2 0.337 0.317
MOL3 2.74 2.35 0.264 0.246 767.3 794.4 0.327 0.319
MOL4 2.29 1.92 0.249 0.210 705.7 785.7 0.327 0.319
MOL5 2.91 2.32 0.262 0.247 773.3 810.5 0.335 0.315
MOL6 2.76 2.34 0.259 0.245 781.2 795.5 0.332 0.319
MOL7 2.22 1.96 0.256 0.231 727.8 802.9 0.346 0.314
MOLS 2.70 2.37 0.274 0.246 717.4 666.2 0.327 0.312
MOL9 2.46 2.12 0.282 0.242 771.7 799.7 0.331 0.318
MOL10 2.38 2.36 0.248 0.245 696.5 671.5 0.334 0.316
Performance metrics

f RMSE: 0.39 MAE: 0.35 MaxAE: 0.62
AELomo RMSE: 0.03 MAE: 0.02 MaxAE: 0.04
Jmax RMSE: 43.77 MAE: 37.68 MaxAE: 80.01
Ep RMSE: 0.02 MAE: 0.02 MaxAE: 0.03

chemically consistent fragment-property landscape than any
previously reported fragment-based ML approach for NFA
discovery.

3.8 Quantum chemical validation of predicted properties

To rigorously validate the MPNN model, we performed
detailed DFT calculations on a representative subset of 10
top-performing candidate molecules. This selective approach
was necessitated by the significant computational cost
associated with high-level quantum chemical simulations,
which limits their scalability to large datasets. Despite this
constraint, the chosen subset captured sufficient structural
and electronic diversity, enabling a meaningful assessment
of the model's predictive power. The chemical structures of
these molecules are displayed in Fig. 10.

The predicted values for key optoelectronic descriptors
—AE1 umoy Amax f» and Ep,—showed excellent agreement with
DFT results, as summarized in Table 2. The RMSE values
were notably low: 0.027 for AE;ymo, 43.77 nm for Anyax, 0.390
for f, and 0.019 for E,. MAE values further underscored this
accuracy: 0.024, 37.68 nm, 0.348, and 0.017, respectively. The
model's prediction of AE;ypo (0.2071-0.2822 €V) maintained
a relative error below 20% across all molecules and
demonstrated a strong linear correlation with DFT references.
Similarly, predicted An.x values (666.22-810.47 nm) tracked
well with DFT trends, with a maximum absolute error of
80.01 nm (=11.34%). Exciton binding energies were
estimated with high fidelity, with relative errors consistently
below 10%. The largest deviation—between 0.314 (predicted)
and 0.346 (DFT)—amounted to just 9.2%, reflecting the
model's ability to capture delicate energetic differences. For
oscillator strength, over 80% of the predictions fell within
10% of DFT values, and the largest error remained within
~20%, indicating that most deviations were random rather
than systematic.

Mol. Syst. Des. Eng.

A comprehensive statistical analysis confirmed that all
predicted values deviated by no more than 22% from the
corresponding DFT-calculated values. Notably, the model
showed particularly high accuracy for molecules with
extended m-conjugation, maintaining robust performance
across a range of structural complexities. These results
collectively demonstrate that the MPNN model can reliably
and efficiently approximate expensive quantum mechanical
properties, enabling rapid pre-screening of promising
molecules for optoelectronic applications. While this study
focused on theoretical validation, future work incorporating
experimental synthesis and photophysical characterization
will be invaluable to fully confirm the model's real-world
applicability—although such efforts are beyond the scope of
the present investigation.

4 Conclusion

In this work, we introduced a computational framework that
integrates cheminformatics, machine learning, and quantum
chemical calculations to accelerate the discovery of high-
performance  non-fullerene  acceptors  for  organic
photovoltaics. By combining automated fragmentation,
hierarchical clustering, and combinatorial assembly, we
generated a synthetically accessible library of 500000
acceptor-donor-acceptor type NFAs with broad chemical
diversity. Principal component analysis and fragment
clustering revealed structural motifs that critically influence
exciton dissociation, charge transport, and optical
absorption.

A message-passing neural network enhanced with
evidential learning enabled accurate prediction of key
descriptors—oscillator strength (f), LUMO offset (AErymo),
maximum absorption wavelength (1max), and exciton binding
energy (E,)—while also quantifying predictive uncertainty.
Validation against DFT benchmarks confirmed excellent
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reliability, with all predictions lying within 22% of reference
values. Importantly, the model not only captured property
trends but also reshaped the accessible chemical space,
compressing broad distributions into narrow regions
centered on optimal targets. This deterministic refinement
produced a >1600-fold enrichment in “triple-hit” candidates
simultaneously satisfying the criteria of AEjypmo < 0.25 €V, Ej
< 0.32 eV, and f = 1.5, ultimately yielding 4800 promising
NFAs with finely tuned optoelectronic properties.

Unlike prior efforts that optimize individual descriptors in
isolation,®*:**°
objective optimization and leverages fragment-level chemical
intuition to ensure interpretability and reproducibility. This
integrative strategy establishes a scalable route for rational
NFA design, bridging computational predictions with
experimental feasibility. Beyond OPVs, the methodology
provides a generalizable blueprint for the accelerated
discovery of functional organic semiconductors, paving the
way for data-driven materials design in optoelectronics and
related energy-conversion technologies.

our framework achieves simultaneous multi-
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