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ABSTRACT: Lithium bis(fluorosulfonyl)amide (LiFSA) is a commonly used lithium salt in electrolyte formulations due to its
electrochemical stability, favorable ionic dissociation, and potential for enhancing lithium-ion transport in energy storage
applications. Understanding the solvation dynamics and transport properties of LiFSA, particularly in mixtures with sulfone-based
solvents, is crucial for optimizing electrolyte performance. Accurate force field parametrization is essential for simulating complex
electrolyte systems with reliable predictive power. This study presents a robust workflow combining a genetic algorithm (GA) and
Gaussian process regression (GPR) to develop optimized Lennard-Jones parameters for pure LiFSA, which are subsequently
transferred to LiFSA-sulfone mixtures. The optimized parameters accurately capture nonbonded interactions and reproduce
experimental transport properties, including viscosity and ionic conductivity, with deviations within 7.5%. Using the Green—Kubo
formalism, viscosity and conductivity trends were computed and linked to solvation dynamics, revealing that mixtures containing
symmetric sulfones (sulfolane and dimethyl sulfone) exhibit lower viscosities and higher conductivities compared to those with
asymmetric sulfones (ethyl methyl sulfone and 3-methyl sulfolane). Analysis of relative coordination numbers further demonstrates
the pivotal role of solvent oxygen (Og) in modulating ion transport, with enhanced Og coordination reducing viscosity and
improving conductivity by facilitating ion mobility. This study provides a microscopic understanding of how ion—solvent
interactions and solvation structures govern macroscopic transport behavior. The GA-GPR parametrization framework not only
delivers transferable force fields capable of accurately predicting electrolyte properties but also ofters practical insights for tailoring
electrolytes with optimized performance in energy storage and conversion applications.

1. INTRODUCTION constant and electrochemical stability.””~"" Both aliphatic
(e.g., dimethyl sulfone, DMS, and ethyl methyl sulfone, EMS)
and cyclic (e.g, sulfolane, SL, and 3-methyl sulfolane, MSL)
sulfones exhibit distinct solvation behaviors. Their symmetric
(DMS, SL) or asymmetric (EMS, MSL) molecular structures
further influence the physicochemical properties of electrolyte
mixtures, >0

Classical molecular dynamics (MD) simulations offer a
powerful tool to probe electrolyte dynamics at the atomic

Lithium-ion batteries (LiBs) are pivotal in portable electronics
and renewable energy storage owing to their high energy
density, long cycle life, and efficiency.' ™ The electrolyte, a
critical component of LiBs, governs ion transport, stability, and
overall battery performance. Designing efficient electrolytes
requires balancing multiple factors, including fast cation
diffusion, resistance to side reactions, high thermal stability,
and extended charge—discharge cycle life.”* Typically
composed of a lithium salt [e.g., lithium bis(fluorosulfonyl)-

amide, LiFSA] dissolved in a solvent or solvent mixture, Received: March 28, 2025
electrolytes’ properties are significantly influenced by solvent Revised:  May 29, 2025
choice and concentration, necessitating a detailed molecular- Accepted: June 23, 2025

level understanding of these systems.’”® Sulfone-based
solvents have emerged as promising candidates for high-
performance LiB electrolytes due to their high dielectric
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level.””7*° However, the accuracy of these simulations
critically depends on the choice of force field, which defines
bonded and nonbonded interactions. While generally appli-
cable, standard force fields are not specifically optimized for
LiFSA-sulfone mixtures, often leading to inaccuracies in
capturing charge distributions and van der Waals interactions.
These limitations can affect key electrolyte properties such as
viscosity, conductivity, and ion diffusion. Notably, no specific
force fields are available for LiFSA, and existing force fields like
OPLS*"** are incapable of predicting correct dynamics, often
resulting in sluggish ion transport.”** Therefore, developing an
accurate force field for LiFSA is crucial before investigating
mixture properties.

To address these challenges, we developed a novel force field
parametrization approach tailored to the individual compo-
nents of these electrolyte mixtures.”* Our method integrates a
genetic algorithm (GA) with Gaussian process regression
(GPR) in an active learning framework, significantly reducing
the computational cost compared to conventional manual
tuning'>**~*” or machine learning-based optimization meth-
ods.”*~** This approach achieved convergence in just seven
iterations using only 275 data points, demonstrating its
efficiency and potential for broader applications in electrolyte
modeling. Initially developed in our previous work™ to obtain
accurate force field parameters for all four sulfones, this
method demonstrated precise predictions of viscosity, surface
tension, liquid phase density, and radial distribution functions
(RDFs), validated against experimental data® and ab initio
MD (AIMD) trajectories. In the present study, we first apply
this framework to optimize force field parameters for LiFSA
and validate them against available reference data. Recent QM-
to-MM mapping methods provide physically motivated force
field parameters derived directly from quantum electron
density partitioning.>** Our approach differs by combining
genetic algorithm—guided global optimization with Gaussian
process regression to iteratively refine parameters based on
condensed-phase properties. This data-driven strategy comple-
ments deterministic atom-in-molecule (AIM) mappings by
enabling the correction of QM-derived parameters to capture
experimental observables better, improving accuracy and
transferability for complex chemical families such as sulfone
additives.

This study focuses on binary mixtures of LiFSA with four
sulfone solvents (SL, MSL, DMS, and EMS) in a 1:3 salt-to-
solvent molar ratio. Using our optimized force fields for both
LiFSA (developed in this work) and sulfones (from our
previous study),”* we conducted MD simulations to investigate
how molecular interactions at the atomic scale dictate the
structural and transport properties of these mixtures. We
validated our simulation results against experimental density
and transport properties,4 ensuring accurate capture of key
electrolyte behaviors. Further analysis of solvation structure
and molecular organization was performed using radial
distribution functions, angular distributions, rotational auto-
correlation functions (RACFs), and coordination number
calculations.

The novelty of this work lies in several key aspects. We
present the development of an accurate force field for LiFSA
using a robust active learning approach. This study offers a
comprehensive investigation of LiFSA-sulfone binary mixtures
using optimized force fields for both the salt and solvents,
elucidating the influence of aliphatic vs cyclic sulfones and
symmetric vs asymmetric solvent structures on Li-ion solvation

and transport. By providing these insights, this study
contributes to a deeper understanding of sulfone-based
solvents’ potential in next-generation LiB electrolytes and
paves the way for more accurate and efficient modeling of
complex electrolyte systems.

2. METHODS

In this study, we developed a robust and accurate force field for
lithium LiFSA using the OPLS functional form,*"** building
upon our previous work with sulfone molecules.”* The force
field describes intramolecular and intermolecular interactions
through bonded and nonbonded terms. The total potential
energy (U for the system is expressed as

U = 2 ko(r — )* + D k(6 — 6,)°

bonds angles
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In this equation, the bonded interactions include terms for
bonds, angles, and dihedrals, while nonbonded interactions are
represented by Lennard-Jones (L]) potentials and electrostatic
interactions. The Ryckaert-Bellemans coefficients (C,) allow
for a flexible representation of dihedral interactions, which is
crucial for capturing the conformational behavior of the FSA
anion. For LiFSA, we adopted the intramolecular bonded
parameters directly from ref 25. However, the partial charges
required special attention due to the ionic nature of LiFSA.
Atomic partial charges for LiFSA were derived using the
DDEC6 method,” implemented in Chargemol,*® applied to
the gas-phase DFT-optimized structure of the isolated ion pair.
Although periodic systems can also be used for charge
derivation, the gas-phase model was chosen to balance physical
accuracy with computational efficiency. The optimization was
performed at the M06—2X/aug-cc-pVDZ level of theory using
the Gaussian 09 program.”” This approach ensured a balanced
representation of the charge distribution within the ionic
compound and was consistently applied across all pure and
mixed systems. The reliability of these charges is supported by
the good agreement between calculated and experimental
dielectric properties observed in our previous work.”*

We aimed to estimate optimal values using reference data for
the nonbonded interactions, particularly the L] parameters ¢
and ¢ (see Figure 1 for atom type definition). The unlike
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Figure 1. Molecular structure and atom types of LiFSA used in this
study.
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interactions between atom types were calculated using the
Lorentz—Berthelot combining rules. The optimization of these
parameters was guided primarily by two reference quantities:
the liquid phase density of LiFSA and site-specific radial
distribution functions, focusing on key atom pairs such as Li—
O and O—O0. Due to the lack of available experimental data for
the density of pure LiFSA in its molten state, we relied on ab
initio molecular dynamics simulations to obtain reference
density values for force field parametrization. Despite an
extensive literature search, we found no reported experimental
measurements for neat LiFSA density, typically limited to its
mixtures with solvents. These AIMD simulations provided
density estimates and the trajectories necessary to compute
accurate RDFs, offering a detailed picture of the molecular
structure and interactions in the liquid phase. This approach
ensures a consistent and physically grounded force field for
LiFSA that is compatible with our previously developed force
fields for sulfone molecules®* while accounting for the unique
characteristics of this ionic compound.

2.1. Reference Database Generation. 2.1.1. Ab Initio
Molecular Dynamics Simulations. We conducted AIMD
simulations of LiFSA in the liquid state to obtain reference
values for the fitness calculation. The initial configuration was
constructed using the optimized ground-state geometry of
LiFSA. We packed 30 LiFSA ion pairs into a cubic box with a
side length of approximately 20 A using Packmol.’® This
system size was chosen to balance computational cost with an
adequate sampling of the ionic liquid structure. Before the
AIMD run, we performed classical molecular dynamics
simulations using GROMACS v2020.4°>"" to equilibrate the
system. Starting from an energy-minimized configuration, we
simulated a cubic box containing 30 LiFSA ion pairs with
periodic boundary conditions applied in all directions. The
system evolved for 1 ns in the NPT ensemble using a time step
of 1 fs. Temperature was maintained at 423 K using the
velocity-rescaling thermostat,*’ and pressure was kept at 1 bar
using the Berendsen barostat.*” Electrostatic interactions were
treated with the smooth particle mesh Ewald (SPME)
method,” and a cutoff of 1.3 nm was applied for both
Coulombic and van der Waals interactions. This equilibration
ensured the system attained a realistic density prior to AIMD.
The resulting supercell was then geometry optimized within
the density functional theory (DFT) framework. We set
convergence criteria of 107 and 107> au for the gradients on
the wave functions and nuclear positions, respectively. The
other important DFT parameters were kept the same, as
discussed below. Since the system undergoes extensive
equilibration, the final density obtained from AIMD is not
sensitive to the specific choice of initial configuration.

We performed Born—Oppenheimer MD simulations using
the Quickstep module*** of the CP2K electronic structure
code.”® The AIMD simulations employed density functional
theory within the Gaussian and plane wave (GPW) framework.
We used the Perdew—Burke—Ernzerhof (PBE)*” functional to
account for exchange—correlation effects, supplemented with
Grimme’s D3*® empirical dispersion correction to capture
long—range interactions, crucial for ionic liquids. We set the
dispersion cutoff to 16 A. For the wave function calculations,
we employed double { valence polarization (DZVP) basis sets
with short-range terms for each atom type, using an energy
cutoff of 500 Ry. The norm-conserving Goedecker—Teter—
Hutter (GTH)**° pseudopotentials were applied to consider
the effect of nuclei and core electrons. We integrated the

equations of motion with a time step of 1 fs. The system was
equilibrated for 50 ps in the NPT ensemble at 1 bar using an
isotropic unit cell according to the Martyna et al. scheme,”’
with a time constant of 500 fs. Following equilibration, we
conducted a production simulation in the canonical NVT
ensemble for 20 ps. The temperature was set at 423 K, above
the melting point of LiFSA 403 K*, and controlled by one
chain of six Nosé—Hoover thermostats>> with a time constant
of 100 fs. We employed three-dimensional periodic boundary
conditions in all simulations. We stored the trajectory every 10
fs for postsimulation analysis. We computed radial distribution
functions from these trajectories for key atom pairs, including
Li—O and O—O. The final set of liquid phase densities and
these RDFs served as reference data for our machine learning
model, providing a benchmark to optimize the force field
parameters for LiFSA efficiently.

2.1.2. Classical Molecular Dynamics Simulations. To
develop the Gaussian process regression surrogate model for
LiFSA, we generated a training data set through a series of
classical MD simulations. A detailed workflow is displayed in
Figure S1 in the Supporting Information. The initial force field
was constructed using the OPLS functional form®"** for
nonbonded interactions and bonded parameters from ref 25,
with atomic site charges determined via the DDEC6 method,*
yielding a parent parameter set. We employed a genetic
algorithm to explore the nonbonded Lennard-Jones parameter
space by introducing +5% perturbations to the ¢ and € values
of selected atom types in Li* and FSA™ ion. Each mutation
generated 200 offspring parameter sets per generation,
enabling efficient sampling and optimization of the L]
interaction parameters. We performed classical MD simu-
lations on systems containing 1000 LiFSA ion pairs using these
200 mutated parameter sets. The simulations were conducted
using the GROMACS v2020.4>”* engine under thermody-
namic conditions matching those of the AIMD simulations to
achieve equilibrated configurations. We initialized the simu-
lations from energetically minimized configurations and
employed a time step of 1 fs. The simulations used a cubic
box with periodic boundary conditions applied in all directions.
We conducted the simulations in the NPT ensemble, utilizing a
velocity-rescaling thermostat'' to maintain the temperature at
423 K and a Berendsen barostat"” to control pressure at 1 bar.
For electrostatic interactions, we employed the smooth particle
mesh Ewald (SPME) method*® for real-space calculations and
fast Fourier transform (FFT) for reciprocal lattice points. We
set the cutoff for Coulombic and van der Waals interactions to
1.3 nm. Each simulation was run for 2 ns, with the first 500 ps
treated as equilibration. Densities were computed from the
final 1 ns of the trajectory to ensure accurate sampling of the
equilibrated state.

For each of the 200 parameter sets, we calculated the liquid
phase density and radial distribution functions for key atom
pairs, including Li—O and O—O, once volume equilibration
was achieved. These computed densities and RDFs constituted
the training and testing data for the GPR surrogate model,
providing the necessary input to optimize the force field
parameters for LiFSA. The optimization was performed using
the full radial distribution functions as target properties to
ensure a comprehensive and transferable description of the
solvation structure. This approach captures both short- and
medium-range correlations beyond the first solvation shell,
which are often inadequately represented when using only
select RDF features such as peak positions or coordination

https://doi.org/10.1021/acs.jpcb.5c02097
J. Phys. Chem. B XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.5c02097/suppl_file/jp5c02097_si_001.pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.5c02097?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry B

pubs.acs.org/JPCB

numbers. Moreover, key structural descriptors—such as the
coordination number—are inherently encoded in the full RDF
through integration, allowing for physically consistent opti-
mization. This continuous representation also facilitates
smoother convergence in the GA-GPR workflow and enhances
the robustness of the optimized force field when applied to
mixture systems. This approach allowed for a comprehensive
exploration of the parameter space, facilitating the develop-
ment of an accurate and efficient force field tailored for LiFSA.

2.2. Optimization Workflow. 2.2.1. Fitness Function for
LJ Parameter Optimization. To evaluate how well the
predicted force fields reproduce the reference liquid phase
properties of LiFSA, we defined a fitness function that
quantifies the deviation between predicted values and reference
data. The overall fitness function, F, was designed to
simultaneously minimize the error in density and the deviation
in RDFs

F= wdensityEiensity + WRDFPi{DF (1)

where Wye,gt, and wrpp are weights accounting for the different
units and magnitudes of the two components. The density
component, Fye,g,, represents the absolute error between
predicted and reference densities

Eiensity = lDFF - DRef.l (2)

Here, Dy is the density obtained from classical MD
simulations using the predicted force field, and D, is the
reference density from AIMD simulations. The RDF
component, Fppg, calculates the root-mean-square error
between predicted and reference RDFs for key atom pairs in
LiFSA

2 2
| Mo T Xo0
Fop={——
2 (3)

The terms y7;0 and yao quantify the deviation between the
predicted and reference RDFs and are computed as follows.

2 Zr [gxMD(”) - g{i\ﬁD(r)]2
Xoa Zr [g{i&{jlle(r)]z “

where goP(r) and gy (r) are the RDFs for atom pairs a-a
(Li—O or O—0), and r is the distance over which RDFs were
calculated, ranging from 0.0 to 9.0 A, with a spacing of 0.02 A.
This fitness function reduces the task of determining optimal
force field parameters to an optimization problem, aiming to
minimize F by adjusting the nonbonding parameters ¢ and €.
This ensures accurate reproduction of both structural (RDF)
and thermodynamic (density) properties of LiFSA. Further
details on implementing this fitness function can be found in
our previous work.”* Figure S1 summarizes the entire
optimization workflow.

2.2.2. Surrogate Model and Optimization Process. Our
optimization process employed a Gaussian process regression
model as a surrogate to predict fitness values for different
Lennard-Jones parameter sets. This model was integrated into
a genetic algorithm framework, forming an active learning loop
to search for optimized parameters efficiently. The GPR
model, implemented using the Scikit-learn® library,
uses a composite kernel function combining a constant kernel
and a Radial Basis Function (RBF) kernel. This configuration
allows the model to capture both global variance and local
smoothness in the fitness landscape. The model’s hyper-

parameters were optimized through 10 restarts to ensure
robust training.

The GA, developed using the DEAP** library, systematically
explores the L] parameter space. It generates new candidate
sets through mutation and crossover operations, with initial
bounds set within +5% of OPLS nonbonded parameters.
These bounds were later expanded based on observed
parameter ranges in the initial data set. The active learning
process involves iterative refinement of the GPR model. In
each iteration, the GA generates 500 new candidate
parameters; the GPR model predicts their fitness, and the
top 10—15 candidates undergo classical MD simulations for
actual fitness evaluation. These new data points are then added
to the training data set, and the GPR model is retrained. This
process typically converged after 7 iterations, resulting in a data
set of approximately 275 points. The parameter set with the
lowest fitness value from the final iteration was selected as the
optimal force field, with minor manual adjustments for fine-
tuning if necessary. Other specific details of the surrogate
model and optimization process, including kernel function
parameters, GA operations, and convergence criteria, were kept
consistent with our previous work.”* This approach ensures an
efficient and reliable optimization of force field parameters for
LiFSA, building upon our established methodology.

2.3. Production Simulation. Production simulations for
pure LiFSA and its mixtures were performed using classical
molecular dynamics with the GA-GPR optimized force field.
For pure LiFSA, an energy-minimized configuration consisting
of 3000 LiFSA molecules at 423 K was equilibrated in the NPT
ensemble using a time step of 1 fs. The total duration of the
simulation was S0 ns. An identical simulation was also
conducted using the OPLS force field for comparison. These
simulations used a 1.3 nm cutoff for long—range interactions,
with temperature and pressure controlled by a velocity-
rescaling thermostat*' and Berendsen barostat,*” respectively.
Due to the limited availability of experimental data on the
transport properties of pure LiFSA, the comparison between
GA-GPR and OPLS force fields was based on structural
observables—specifically, the equilibrium density and radial
distribution functions derived from the equilibrated trajecto-
ries.

Mixture simulations maintained a 1:3 molar ratio of salt-to-
solvent at 303 K. This ratio of salt-to-solvent was based on
experimental measurements, allowing for direct comparison
between our simulations and experimental results.* The force
fields for sulfones were taken from our previous work, which
used the same GA-GPR surrogate model.”* Simulations were
performed in the NPT ensemble for 10 ns equilibration with a
1 fs time step, using a Berendsen barostat” and velocity
rescaling’' for temperature control. The LiFSA-SL mixture
required an additional S ns for equilibration. Two independ-
ently equilibrated configurations were used for the NVT
production runs to improve statistical accuracy in transport
property calculations. Each S ns production trajectory was
segmented into multiple statistically independent blocks to
compute transport properties such as viscosity and ionic
conductivity.

To benchmark the performance of the GA-GPR force field,
we also performed NPT simulations for each mixture using the
standard OPLS force field. The resulting densities were
compared with experimental values to assess the relative
performance of the two models. This comparison highlights
the improvement offered by the GA-GPR parameters. We want
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to note that we have limited the comparison to density due to
the high computational cost associated with transport property
calculations (which require long simulation trajectories and
careful statistical averaging). However, in our previous work
[ref 24], we performed a detailed assessment of OPLS-based
transport properties for pure sulfone systems and found
considerable discrepancies with experimental viscosity and
conductivity values. These observations reinforce the advant-
age of the GA-GPR force field in delivering improved accuracy
for both structural and transport properties compared to the
conventional OPLS force field.

To validate the developed force fields, we computed the
viscosity (17) of each mixture using the Green—Kubo relation,
which involves integrating the pressure autocorrelation
function.”>™*” The viscosity is given by

v ©
n= kB_T [)‘ <El/1(0)P{lﬂ(t)> dt (5)

where V is the simulation volume and (P,4) represents the
pressure tensor components. We recorded the pressure tensor
after every 10 fs steps to accurately capture the short-time
behavior of the autocorrelation function. The integral in eq 5
converged after 100 ps for aliphatic sulfones and 150 ps for
cyclic sulfone mixtures. Running integrals of the stress
autocorrelation function were evaluated over correlation
lengths ranging from 175 to 250 ps, with offset times of 20
ps, resulting in approximately 20 independent segments. The
final reported viscosities were obtained by averaging the
cumulative integral over the converged viscosities, ensuring
robust and statistically significant results. Error bars were
computed using block averaging across these segments.

The Green—Kubo method for calculating ionic conductivity
(o) involves integrating the current autocorrelation function
over time

1
o=
3Vk,T

OO_.'O'_.' d
JARIOIGET »

where V is the system volume, kg is the Boltzmann constant, T
is the temperature, and j is the electric current vector. This
method directly accounts for correlated ion motions and
provides a more accurate representation of ionic conductivity
in complex electrolyte systems. The current autocorrelation
function was integrated over correlation times of approximately
7 ps with a 20 ps offset, yielding around 500 independent
segments. The final conductivity reported was averaged over
the last 3 ps. Error bars were computed using block averaging
across these segments.

3. RESULTS AND DISCUSSION

3.1. Pure LiFSA. The optimization of Lennard-Jones
parameters for LiFSA using the GA-GPR active learning
framework demonstrated efficient exploration of the parameter
space and rapid convergence. Initially, the surrogate model was
trained on 160 data points, with 40 reserved for testing. This
foundation allowed the model to begin exploring the
parameter space effectively. The iterative nature of the active
learning process proved crucial in refining the model’s
predictive capabilities. After each iteration, the training data
set was updated with new data points, and the model was
retrained. This continuous refinement enabled the model to
progressively adapt its understanding of the parameter
landscape.

The genetic algorithm played a key role in generating diverse
parameter sets. In each iteration, S00 new parameter
combinations were created, from which 10—15 were selected
based on the lowest fitness predicted by the GPR (eq 1). This
approach ensured a balance between the exploration of new
parameter regions and the exploitation of promising areas. As
shown in Figure 2, the fitness evolution demonstrates a clear
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Figure 2. Evolution of fitness values during the GA-GPR optimization
process for LiFSA force field parameters.

improvement trend over the training steps. The initial
iterations show a widespread of fitness values, indicating the
model’s broad exploration of the parameter space. As the
training progressed, the fitness values converged toward lower
values, signifying the model’s increasing ability to identify
optimal parameter sets.

The optimization process reached convergence after 7
iterations, resulting in a final data set of 275 parameters.
This relatively small number of iterations highlights the
efficiency of the GA-GPR approach in navigating the complex
parameter space of LiFSA. The final parameter set achieved
optimal performance in reproducing both density and radial
distribution functions, demonstrating the success of the
optimization strategy in balancing multiple objectives. This
efficient parametrization process underscores the power of
combining genetic algorithms with Gaussian process regression
in an active learning framework for force field optimization.

To assess the accuracy of the GA-GPR optimized force field,
we compared its performance against the standard OPLS force
field. The optimized L] parameters and atomic site charges are
summarized in Table 1. The bonded interaction parameters in
the FSA anion are tabulated in Table S1. A key difference is the
cationic charge of lithium, which was calculated as 0.925828e
using the DDEC6 method, compared to the full +1e charge in
OPLS. This charge modification, along with the revised
nonbonded parameters, plays a crucial role in the accuracy of
the force field.

The GA-GPR refined parameters demonstrate superior
performance in reproducing both the density and structural
properties of LiFSA. As shown in Table 2, the calculated
density using GA-GPR parameters is 1803.28 kg m™>, which
deviates by only —4.47% from the AIMD reference. In
contrast, the OPLS parameters overestimate the density by
9.75%. This overestimation by OPLS can be attributed to the
stronger electrostatic interactions resulting from the higher
partial charges, leading to a more compressed volume. In the
absence of experimentally reported density data for liquid
LiFSA, we used reference data from AIMD simulations
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Table 1. Optimized GA-GPR Force Field Parameters for LiFSA, Including Atom Names, Partial Charges, and Lennard-Jones
Parameters (6 and ¢), Shown Alongside Corresponding OPLS Parameters for Comparison

GA-GPR OPLS
atoms charges (e) o (nm) € (kJ/mol) charges (e) o (nm) € (kJ/mol)
N —1.019366 0.367716 0.728962 —0.42 0.3250 0.711
SF1 1.557158 0.290627 0.825059 1.02 0.3550 1.046
SF2 1.523893 0.290627 0.825059 1.02 0.3550 1.046
F1 —0.295356 0.365354 0.300636 —0.13 0.2950 0.222
F2 —0.268488 0.365354 0.300636 —-0.13 0.2950 0.222
OF1 —0.571006 0.299736 0.807669 —-0.59 0.2960 0.879
OF2 —0.584459 0.299736 0.807669 —0.59 0.2960 0.879
OF3 —0.532748 0.299736 0.807669 —-0.59 0.2960 0.879
OF4 —0.735456 0.299736 0.807669 —0.59 0.2960 0.879
Li 0.925828 0.262330 0.001735 1.00 0.1582 1.409

Table 2. Comparison of Liquid Phase Density (kg m>) of LiFSA at 423 K Obtained from AIMD, GA-GPR Optimized Force
Field, and OPLS Parameters

AIMD GA-GPR % deviation OPLS % deviation
LiFSA 1887.6 180328 + 1.30 —4.47 2071.55 + 0.41 9.75
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Figure 3. Comparison of radial distribution functions for (a) Li—O and (b) O—O atom pairs in LiFSA at 423 K. Results from AIMD (blue), GA-
GPR optimized force field (magenta), and OPLS force field (cyan) are shown. The GA-GPR model demonstrates excellent agreement with AIMD

reference data, while OPLS shows significant deviations.

performed at the PBE-D3 level. This choice is supported by
previous studies where PBE-D3 reliably reproduced structural
and thermophysical properties of similar ionic liquids.">** We
validated our AIMD setup to ensure reliability by confirming
that the computed density aligns well with available
experimental data reported for sulfones in the liquid phase
and related electrolyte systems.”* Therefore, AIMD-derived
density and RDFs were used as consistent and physically
meaningful targets for force field optimization.

Structural validation was performed by comparing the Li—O
and O—O radial distribution functions calculated using GA-
GPR, OPLS, and AIMD methods. As shown in Figure 3a, the
Li—O RDF reveals that OPLS predicts a higher probability of
oxygen atoms being closer to the lithium cation compared to
both GA-GPR and AIMD results. This is consistent with the
overestimated partial charges in OPLS. Notably, the GA-GPR
refined force field shows excellent agreement with the AIMD
Li—O distribution, accurately capturing the solvation structure
around the lithium cation. The O—O RDF (Figure 3b) further
confirms the improved accuracy of the GA-GPR model. It
closely matches the AIMD reference, correctly representing the
oxygen—oxygen correlations within the FSA anion and
between different anions. The OPLS force field, however,

shows significant deviations in peak positions and heights for
both RDFs. Based on these structural validations and the
improved density prediction, the GA-GPR refined force field
was selected for subsequent mixture simulations.
3.2. LiFSA-Sulfone Binary Mixtures. After optimizing the
force field parameters for pure LiFSA using the GA-GPR
approach, we applied these parameters to simulate binary
mixtures at 303 K. The simulation details are discussed in the
Method section. This step is crucial in validating the
transferability and accuracy of our developed force field, as
the parametrization was performed on individual species rather
than their mixtures. To evaluate the reliability of our
simulations, we focused on both the structural and transport
properties of the mixtures. We chose a 1:3 salt-to-solvent ratio
based on experimental measurements, allowing for direct
comparison between our simulations and experimental results.”*
The number of molecules was adjusted to maintain
comparable atom counts across systems: LiFSA/SL
(800:2400), LiFSA/MSL (700:2100), LiFSA/DMS
(1000:3000), and LiFSA/EMS (800:2400). This approach
ensures better statistical accuracy and reduces fluctuations in
the dynamics across the four mixtures.

F https://doi.org/10.1021/acs.jpcb.5c02097
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Table 3. Comparison of Simulated and Experimental Densities* (kg m~) for 1:3 LiFSA-Sulfone Mixtures®

system exp GA-GPR
LiFSA-SL 1458 1431.92 + 0.53
LiFSA-MSL 1375 1368.61 + 0.82
LiFSA-DMS 1474 1478.41 + 0.31
LiFSA-EMS 1389 1405.11 + 0.27

% deviation OPLS % deviation
-1.78 1530.08 + 0.58 494
—0.46 1426.57 + 0.66 3.75

0.30 1534.75 + 0.57 4.12
1.16 145472 + 024 473

“Results are shown for both GA-GPR optimized force field and conventional OPLS force field. The percentage deviation from experimental values
highlights the improved accuracy of the GA-GPR model over OPLS in reproducing liquid-phase density.
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Figure 4. Radial distribution functions for lithium ion interactions in LiFSA-sulfone mixtures. (a) Li—Og RDFs showing lithium coordination by
solvent oxygen atoms. (b) Li—Op, (c) Li—N, and (d) Li—F RDFs illustrate lithium interactions with the FSA anion’s oxygen, nitrogen, and fluorine

atoms, respectively.

The density comparison between simulations using the GA-
GPR optimized force field and experimental values for 1:3
LiFSA-sulfone mixtures demonstrates excellent agreement
across all systems studied, as summarized in Table 3. The
density calculations were performed using the last 3 ns of the
equilibrated trajectory and averaged over three 1 ns blocks.
Our simulations accurately capture the density trends observed
experimentally, with deviations ranging from —1.78% to 1.16%.
The LiFSA-DMS shows the closest agreement, with a minor
deviation of only 0.30%. Interestingly, the simulations slightly
underestimate LiFSA-SL and LiFSA-MSL density while slightly
overestimating it for LiIFSA-DMS and LiFSA-EMS. A notable
observation is the lower density of mixtures containing
asymmetric sulfones (MSL, EMS) compared to those with
symmetric sulfones (SL, DMS). This trend is consistent in
both experimental and simulated results. The structural
asymmetry of MSL and EMS likely introduces steric hindrance,
limiting the proximity between ions and solvent molecules. In
contrast, the symmetric nature of SL and DMS allows for more
efficient packing and stronger interactions with the ionic
species.

To benchmark the performance of our GA-GPR parameters,
we also performed NPT simulations using the conventional
OPLS force field and computed the corresponding mixture
densities. As seen in Table 3, OPLS-based simulations
systematically overestimate the densities across all systems,
with deviations exceeding 3.7% in every case. This over-
prediction indicates that OPLS parameters may lead to
overstructured liquid phases, potentially arising from overly
attractive nonbonded interactions or inadequate description of

solvation structure around the ions. These inaccuracies can
propagate into predicting other properties, especially transport
coeflicients. In contrast, the GA-GPR force field—optimized
using a data-driven approach—exhibits significantly reduced
error in reproducing experimental densities, thereby providing
a more accurate description of ion—solvent interactions. This
improvement underscores the advantage of physically
informed machine learning techniques to refine classical
force fields, particularly for complex ionic liquid systems.
The better agreement with the experiment not only validates
the transferability of the GA-GPR force field from pure
components to binary mixtures but also establishes a reliable
foundation for predictive simulations of structural and
transport behavior in sulfone-based electrolytes.

3.2.1. lon—Solvent Interactions. The solvation structure of
lithium ions in different LiFSA-sulfone mixtures provides
crucial insights into the molecular-level interactions that
govern the electrolyte properties. Analysis of the radial
distribution functions from the equilibrated MD trajectories
reveals distinct coordination patterns around the lithium ions,
as shown in Figure 4. The RDFs indicate that lithium cations
interact closely with various atoms of the FSA anion. The Li—
Op (oxygen from FSA™) and Li—N interactions exhibit
prominent peaks just below 2 A (Figure 4b,c), indicating
strong coordination. In contrast, the Li—F interaction shows a
peak near 3 A, with a second peak visible within 4.5 A (Figure
4d), suggesting two distinct fluorine environments in the first
and second coordination shells. A key observation is the
competitive coordination of lithium ions by oxygens from the
solvent (Og) and the FSA anion (Og). While Op generally
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Figure 5. Coordination number profiles derived from the production run trajectory, showing Li* coordination with (a) solvent oxygen (Og), (b)
oxygen (Og), (c) nitrogen (N), and (d) fluorine (F) atoms from FSA anion.

coordinate more closely to lithium, the solvent oxygen
behavior varies among the different sulfones (Figure 4a). SL
(sulfolane) shows the strongest Og coordination to lithium
among all solvents, with its peak nearly matching that of Op.
MSL (3-methylsulfolane) exhibits the highest O coordination
probability, suggesting weaker solvent interaction. DMS and
EMS show intermediate behavior, with Og peaks slightly lower
and further from lithium than Op. The strongest Li—Og
coordination in the LiFSA-SL mixture can be attributed to
the largest dipole moment observed in the pure SL, as reported
in our previous study on pristine sulfone systems.”*

The coordination strength of N and F atoms to lithium
follows the trend: EMS =~ MSL > DMS > SL. The
coordination number plots are displayed in Figure S. This
trend correlates inversely with the solvent’s ability to
coordinate lithium, suggesting a competition between the
solvent and the anion for lithium coordination. The strong Og
coordination in SL suggests better solvation of lithium ions,
potentially creating a dielectric barrier between Li* and FSA~™
ions. This weakens the strong electrostatic interactions, likely
contributing to the lower viscosity observed for LiFSA-SL
mixtures.* Conversely, the weaker Og coordination in MSL
allows for stronger Li—Og interactions, explaining the higher
viscosity observed in LiFSA-MSL mixtures. The strong ionic
associations in this case may impede ion mobility. DMS and
EMS show intermediate behavior, balancing solvent and anion
coordination to lithium. This balance likely contributes to their
moderate viscosity values compared to SL and MSL mixtures.”
These solvation structure insights provide a molecular-level
explanation for the macroscopic properties observed in the
LiFSA-sulfone electrolyte mixtures, to be discussed in detail in
the following sections, highlighting the crucial role of
competitive coordination in determining electrolyte perform-
ance. Representative snapshots of the lithium ion’s coordina-
tion environment in different binary mixtures, shown in Figure
6, further illustrate this trend. In the LiFSA-SL mixture, Li* is
primarily coordinated by two oxygen atoms, each from SL
molecules and the FSA anion. In contrast, in the other
mixtures, the number of solvent oxygen atoms around Li"
decreases relative to the FSA anion, consistent with the radial

55

el (]

(b)

Figure 6. Representative coordination sphere around Li" in binary
mixtures: (a) SL, (b) DMS, (c) EMS, and (d) MSL. Color scheme:
Li—green; H—white; C—cyan; N—Dblue; O—red; and S—yellow.

distribution function trends observed in Figure 4. This
structural variation reinforces the observed ion association
and viscosity differences across the mixtures.

To deepen our understanding of the molecular interactions
in LiFSA-sulfone mixtures, we analyzed the RDFs for Li—Lj,
Li—solvent, and FSA-solvent pairs, as shown in Figure 7. These
RDFs reveal distinct coordination patterns shaped by the
structural symmetry and molecular volume of the sulfone
solvents. The Li—Li RDFs (Figure 7a) demonstrate significant
variations in ion—ion associations across different solvents.
MSL shows the strongest Li—Li interactions, indicated by the
tallest peak at approximately 4 A, reflecting the close proximity
of lithium ions. EMS exhibits a similar trend but with an
additional shoulder peak at around S A, hinting at weaker
secondary interactions beyond this distance. In contrast, SL
and DMS display weaker Li—Li correlations, characterized by
broader and lower-intensity peaks. This difference suggests
that asymmetric sulfones (MSL and EMS) promote stronger
ion—ion associations due to their reduced ability to effectively
solvate lithium ions, unlike the symmetric sulfones (SL and
DMS). Further insights are gained from the Li-solvent RDFs
(Figure 7b), highlighting the impact of molecular volume on
solvation behavior. With smaller molecular volumes, the
aliphatic sulfones, DMS, and EMS facilitate interactions at
shorter distances, allowing for closer lithium-solvent contact. In
contrast, the larger cyclic sulfones, SL and MSL, coordinate
lithium ions at slightly longer distances due to their bulkier
structure. Additionally, the FSA-solvent RDFs shown in Figure
7¢ shed light on anion—solvent coordination. A small peak at
approximately 4.25 A is observed in all mixtures, indicating
short-range solvent—anion interactions. Among the solvents,
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Figure 7. Radial distribution functions for various interactions in LiFSA-sulfone mixtures. (a) Li—Li correlations; (b) Li-Solvent RDFs depicting
interactions between lithium ions and sulfone solvent molecules; (c) FSA-Solvent RDFs illustrating correlations between FSA anions and sulfone

solvent molecules.

MSL exhibits a slightly higher peak intensity at this distance,
reflecting enhanced solvent access to the FSA anions.
Conversely, SL displays the lowest peak height, suggesting
weaker solvent—anion interactions. These findings collectively
highlight how variations in sulfone symmetry and molecular
size influence ion association and solvation dynamics in LiFSA-
based electrolyte mixtures.

The RDF analyses underscore the critical role of sulfone
symmetry in shaping electrolyte interactions. Symmetric
sulfones, such as SL and DMS, tend to enhance Li*-solvent
interactions while reducing ion—ion associations. In contrast,
asymmetric sulfones, MSL, and EMS promote stronger ion—
ion interactions but weaken Li*-solvent coordination. These
distinct interaction patterns at the molecular level offer
valuable insights into the variations in macroscopic proper-
ties—such as viscosity and ionic conductivity—observed
across the different LiFSA-sulfone mixtures.

The two-dimensional correlation plots between the distance
(r) of lithium ions from the sulfone center of geometry and the
angle (¢) formed by the sulfone’s oxygen bisector axis provide
valuable insights into solvation dynamics across the four
LiFSA-sulfone binary mixtures. Figure 8a illustrates the vectors
used to define the angle between the Li* ion and the sulfone
molecular axis. These plots highlight how sulfone symmetry
and structure influence Li* coordination. For SL (Figure 9a),
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Figure 8. Schematic illustration of the vectors used to define angular
orientations in the analysis for the angular distribution analysis
between Li* and the sulfone (a) and FSA anion (b). For the rotational
autocorrelation function analysis, the orientation vector for sulfone
molecules is defined using the S—O—O triplet (c), and for the FSA
anion, the rotational vector is defined using the SF—=N—OF atom

triplet (d).

the distribution peaks at r &~ 4.25 A and spans a broad angular
range (¢ ~ 120°—150°), reflecting its symmetric structure that
allows flexible bridging coordination between Li" and sulfonyl
oxygens. This distribution suggests a dynamic solvation shell
and a coordination environment consistent with the relatively
weak Li—Li correlations observed in the RDF analysis, where
strong cation—solvent interactions dominate over ion—ion
associations. DMS and EMS (Figure 9b,c) exhibit similar
angular distributions but differ slightly in their distance peaks.
DMS has a sharper peak at r ~ 3.5 A, while EMS shows a
slightly shifted peak near r ~ 3.7 A. This closer Li"
coordination, combined with the narrower angular range (¢
~ 100°—130°), reflects compact monodentate interactions that
align with the moderate Li—Li RDF peaks. The similarity in
their angular patterns suggests comparable solvation behavior,
although EMS’s slightly larger distribution radius hints at
subtle differences in solvation strength. In contrast, MSL
(Figure 9d) displays a shifted peak at r ~ 4.5 A and a broader
angular range (¢ &~ 130°—150°), indicating weaker and more
distant Li*-sulfone coordination due to its bulkier asymmetric
structure. This reduced solvation strength aligns with the
stronger Li—Li correlations observed in the RDF analysis for
MSL, where ionic aggregation dominates due to weaker
cation—solvent interactions. The longer coordination distance
and broader angular range reflect solvation characteristics
typically associated with systems prone to ionic clustering.

To further probe ion-pairing behavior, we extended a similar
analysis to explore the FSA anion’s arrangement around Li"
(see Figure 8b for angle definition). Figure S2 presents two-
dimensional correlation plots with the distance (r) between Li*
and the center of geometry of the FSA anion on the x-axis and
the angle (¢) formed between two axes—one connecting Li*
to the nitrogen atom in FSA and the other passing through the
two sulfur atoms—on the y-axis. Although the overall
distribution patterns are similar across all mixtures, variations
in relative density suggest differences in the degree of Li"
solvation by FSA anions. These subtle variations reflect the
competitive coordination dynamics between sulfone solvents
and FSA anions, as previously indicated by the RDF analyses.
Together, these findings provide a molecular-level perspective
on the solvation environment in LiFSA-sulfone mixtures and
its influence on the observed macroscopic electrolyte proper-
ties.

3.2.2. Rotational Autocorrelation Functions. To gain
deeper insights into the dynamic behavior of solvents and
FSA anions in LiFSA-sulfone binary mixtures, we analyzed the
rotational autocorrelation functions, which describe how
molecular rotation evolves over time and influence ion
transport. The RACF slopes indicate how quickly a molecule
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Figure 9. Two-dimensional correlation plots showing the relationship between the distance (r) from the Li* cation to the sulfone molecule’s center
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and (d) MSL illustrate how molecular symmetry influences Li* coordination and solvation dynamics. The intensity of the color represents the
density of configurations, providing insights into the spatial arrangement of sulfone molecules around Li* ions.
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Figure 10. Rotational autocorrelation function, C(t), as a function of time (¢) for binary mixtures of four solvents (SL, DMS, EMS, and MSL) with

LiFSA: (a) solvent dynamics and (b) anion dynamics.

Table 4. Comparison of Viscosity and Conductivity Obtained from Classical MD Simulations Employing GA-GPR Force

Fields, with Experimental Measurements

mixtures viscosity (cP) conductivity (mS cm™)
exp GA-GPR A% exp GA-GPR A%
LiFSA-SL 121 123.51 + 1.63 2.02 2.19 2.18 + 0.14 —0.46
LiFSA-MSL 148 139.85 £ 1.18 —5.50 135 1.45 + 0.08 7.40
LiFSA-DMS 119 124.77 £ 145 4.85 2.40 2.42 + 0.06 0.83
LiFSA-EMS 122 124.80 £ 0.97 229 1.65 1.70 + 0.10 3.03

loses memory of its initial orientation, with steeper slopes
corresponding to faster rotational dynamics. The rotational
autocorrelation function was computed by defining a vector
normal to a molecular plane formed by a triplet of atoms. For
sulfones, the (S—O—O0) triplet was used to define the
orientation vector of the SO, group. The vector was defined
using the SE—=N—OF triplet for the FSA anion to represent the
core orientation. These selections effectively capture the
relevant rotational dynamics of the solute species. Figure
8¢,d provide illustrative diagrams showing the chosen vectors.
Figure 10a presents the RACFs of the sulfone solvents,
highlighting distinct trends based on molecular structure and
symmetry. Aliphatic sulfones (DMS and EMS) exhibit faster
rotational decay than their cyclic counterparts (SL and MSL),
as reflected by the steeper RACF slopes. This faster rotation is
attributed to their smaller molecular volumes and the absence
of rigid cyclic ring geometry, which minimizes rotational
resistance. Within each structural class, the asymmetric
sulfones (MSL and EMS) display even faster rotational
decay than the symmetric ones (SL and DMS). This behavior

arises from the asymmetry-induced shift in their center of
mass, which reduces their moment of inertia and facilitates
faster rotation.

Figure 10b shows the RACFs of the FSA anions in the
different sulfone mixtures, providing further insights into anion
dynamics. The rotational decay of FSA™ is fastest in the LiFSA-
SL mixture and slowest in the LiFSA-MSL mixture, with DMS
and EMS mixtures showing intermediate and nearly identical
behavior. This trend aligns with the anion—solvent interactions
observed in the FSA-solvent RDFs. Specifically, MSL exhibited
the tallest first RDF peak in Figure 7¢, indicating strong and
localized interactions that restrict FSA’s rotational freedom,
while SL displayed the weakest peak, consistent with the faster
anionic rotation observed in its RACF. Overall, the RACF
analyses reveal that both solvent structure and solvent—anion
interactions significantly impact rotational dynamics, which in
turn influence the microscopic environment governing ion
transport. These findings complement earlier RDF observa-
tions, providing a dynamic perspective on how molecular

https://doi.org/10.1021/acs.jpcb.5c02097
J. Phys. Chem. B XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acs.jpcb.5c02097?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c02097?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c02097?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c02097?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c02097?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c02097?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c02097?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.5c02097?fig=fig10&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.5c02097?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry B pubs.acs.org/JPCB
20
150{ --=- SL - -=- SL
--k- MSL \’&/W/k/"l““ 7101 k- MSL
&, 100 = g o Mob At i '9,,,
4 5} T W] o W
= ”"/ @ UW',U‘ u""“"‘(}.‘“’.’."?f\. 5""#” AR, , ,\.‘ﬁn"f" $ y"
50 ,f’/ LeeasilZssds | O 104
NP 0 ()
0 50 100 150 200 250 2 3 4 5 6
t [ps] t [ps]
20
-+ DMS -+~ DMS
100{ -*¢- EMS T 109 -s«- EMS "
— j=1 8 /\N‘ Vi
& = o i '.ﬁ"‘“"“\‘.
EEy - S VT »»f»
/,:;’f" o —10
ol & ) . (d)
0 50 3 4 5 6
¢ [ps]

Figure 11. (a,b) Viscosity (17) and (c,d) ionic conductivity (6) computed using the Green—Kubo formalism (egs 5 and 6) as a function of
correlation time for LiFSA-sulfone mixtures. The shaded regions represent the uncertainty in the calculated values for each mixture. The insets

show the converged part of the running integral.

structure affects the solvation environment and coordination
dynamics in LiFSA-sulfone electrolytes.

3.2.3. Transport Properties. The transport properties of
LiFSA-sulfone mixtures, specifically viscosity and conductivity,
were evaluated using the Green—Kubo formalism (eqs 5 and
6), which integrates the pressure tensor and electric current
autocorrelation functions, respectively. The computed values,
summarized in Table 4, exhibit excellent agreement with
experimental data, with deviations within 7.5%, validating the
reliability of the GA-GPR optimized force fields. This
agreement highlights the effectiveness of the parametrization
workflow, which accurately captures nonbonded interactions in
pure systems and seamlessly extends these parameters to
mixtures without additional optimization.

Viscosity calculations, yielded average values derived from
the converged portion of the correlation time (Figure 11a,b).
The simulated viscosities closely align with experimental
values, with deviations ranging from 4.85% (LiFSA-DMS) to
—5.50% (LiFSA-MSL). For instance, MSL, with the highest
experimental viscosity (148 cP), shows a simulated value of
139.85 cP, corresponding to a deviation of —5.50%. Notably,
binary mixtures containing symmetric sulfones (SL and DMS)
exhibit lower viscosities compared to those with asymmetric
sulfones (MSL and EMS). This can be attributed to the
differences in ion—solvent interactions and resultant variations
in molecular packing and solvation dynamics, as discussed
earlier.

Conductivity, another essential transport property, was also
computed using the Green—Kubo formalism (eq 6). The
results, plotted in Figure 11c,d, reveal a maximum deviation of
7.40% for LiFSA-MSL, where the experimental conductivity of
1.35 mS cm™ corresponds to a simulated value of 1.45 mS
cm™". The closest match occurs in the LiFSA-SL mixture, with
a simulated conductivity of 2.18 mS cm™" closely reflecting the
experimental value of 2.19 mS cm™ (—0.46% deviation). The
observed conductivity trend—DMS > SL > EMS > MSL—is
consistent between simulations and experiments. This trend, as
shown in Table 4, indicates that mixtures with symmetric
sulfones (SL and DMS) generally exhibit higher conductivities
than their asymmetric counterparts (EMS and MSL), likely
due to the enhanced symmetry-driven solvation and ion
transport dynamics. Interestingly, while conductivity varies

notably across mixtures, viscosities for SL, DMS, and EMS are
relatively similar despite their structural differences. This
indicates that conductivity is more sensitive to collective
atomic behavior and ion—solvent interactions than viscosity.
The overall agreement between simulated and experimental
transport properties confirms the robustness of the GA-GPR
optimized force fields in describing both structural and
dynamic characteristics of LiFSA-sulfone mixtures. These
findings underscore the versatility of the parametrization
workflow, which successfully delivers transferable force fields
capable of accurately capturing the intricate electrolyte
behavior at both microscopic and macroscopic scales.

To further assess the quality of our GA-GPR force field, we
computed the self-diffusion coeflicients of Li* and FSA™ ions
using mean-squared displacement analysis from the MD
trajectories. Table S shows that the computed diffusion

Table 5. Comparison of Diffusion Coefficients (1077 cm?/s)
for Lithium (Dy;*) and FSA Anion (Dggs-) Obtained from
Classical MD Simulations Employing GA-GPR Force Fields,
with Experimental Measurements

mixtures Dy Dggp- Dy;+/Drgy-
exp GA-GPR exp GA-GPR exp GA-GPR

LiFSA-SL 1.63 0.16 1.29 0.13 1.26 1.18

LiFSA-MSL 1.08 0.13 1.07 0.17 1.01 0.80

LiFSA-DMS 1.63 0.18 1.84 0.19 0.89 0.98

LiFSA-EMS 1.05 0.52 1.29 0.54 0.81 0.96

coeflicients are systematically lower than the experimental
values, a known limitation of classical MD simulations due to
overestimated solvent viscosities. Nevertheless, the ratio of
D+ to Dpgy is well preserved across all solvent systems,
indicating that the force field accurately captures the relative
ion mobilities. This consistency is particularly encouraging in
light of recent findings that force field optimization often leads
to an imbalance between ionic conductivity and diffusivity.>”
Our results suggest that the GA-GPR approach yields a more
balanced and transferable description of ion transport in
sulfone-based electrolytes.

We calculated the ratios of different relative coordination
numbers to explore the relationship between transport
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properties and local solvation environments, as shown in
Figure 12. The heatmap reveals a clear trend: relative
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Figure 12. Heatmap depicting the correlation between transport

properties (viscosity, 77, and conductivity, 6) and relative coordination

number ratios (ﬁ, 3, ﬁ, and &) in LiFSA-sulfone mixtures. The
o’ N’ N Op +N

negative correlation with viscosity and positive correlation with

conductivity highlight the significant influence of solvent oxygen (Og)

coordination on ion transport.

coordination numbers exhibit a negative correlation with
viscosity and a positive correlation with conductivity. Among

. . . o) .
the various coordination number ratios, the O—S ratio has the
F

most significant impact on both transport properties, indicating
that a higher proportion of solvent oxygen (Og) relative to
anion oxygen (Op) reduces viscosity while enhancing
conductivity. This aligns with our earlier observations from
the RDF plots in Figure 4a,b, which demonstrated enhanced
cation—solvent interactions in sulfolane (SL) mixtures. Addi-

tionally, the 9
Op +N

combined effect of solvent oxygen and the oxygen and nitrogen
atoms from the anion. This collective coordination highlights
the interplay between ion solvation and molecular packing,
directly influencing viscosity and conductivity trends. Specif-
ically, higher coordination involving anionic atoms tends to
increase viscosity, while enhanced coordination of Og
promotes higher conductivity by facilitating ion mobility.
These findings suggest that the relative coordination
numbers can be tuned by altering the molar ratios of sulfones
and lithium salt, thereby modulating the transport properties.
This insight provides a microscopic understanding of how
solvation structure and coordination influence macroscopic
transport behavior in LiFSA-sulfone mixtures, offering
potential strategies for optimizing electrolyte performance.

ratio also plays a crucial role, reflecting the

4. CONCLUSIONS

This study presents a robust and efficient framework for
systematically developing accurate and transferable force fields
for LiFSA-sulfone mixtures, leveraging a genetic algorithm and
Gaussian process regression. The optimized force fields achieve
remarkable agreement with experimental transport properties,
including viscosity and ionic conductivity, with deviations

within 7.5%. This high accuracy demonstrates the effectiveness
of the GA-GPR workflow in capturing nonbonded interactions
and extending these optimized parameters to mixed systems
without additional refinement, thus enhancing the predictive
power for complex electrolyte behavior.

The calculated viscosity and conductivity trends, derived
using the Green—Kubo formalism, reflect the critical role of
molecular symmetry, ion—solvent interactions, and solvation
dynamics. Binary electrolyte mixtures with symmetric sulfones
(SL and DMS) exhibit lower viscosities and higher
conductivities than their asymmetric counterparts (EMS and
MSL) due to enhanced ion mobility. These findings emphasize
the delicate balance between solvent structure and ion
transport in determining macroscopic properties. Furthermore,
the heatmap analysis reveals strong correlations between
relative coordination numbers and transport properties,
particularly highlighting the dominant role of solvent oxygen
(Og) coordination in reducing viscosity and enhancing ionic
conductivity. This analysis provides microscopic insights into
the solvation shell structure and its direct impact on transport
efficiency.

By linking solvation structure to macroscopic transport
behavior, this study not only deepens our understanding of ion
transport mechanisms in LiFSA-sulfone mixtures but also
offers practical guidance for electrolyte design. The demon-
strated versatility of the GA-GPR optimization strategy paves
the way for the rational design of next-generation electrolytes
with tunable properties tailored to meet the performance
demands of future energy storage and conversion applications.
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