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TADF emitters

Sanyam, † Bibhas Das † and Anirban Mondal *

The rational design of thermally activated delayed fluorescence (TADF) and inverted singlet–triplet (INVEST)

emitters demands accurate prediction of critical photophysical properties, particularly singlet–triplet

energy gaps (DEST) and oscillator strengths (f). Conventional machine learning (ML) models often neglect

the underlying physics, limiting their transferability and interpretability across chemical space. In this

work, we develop a physics-informed machine learning (PIML) framework that leverages physically

meaningful molecular descriptors to predict DEST and f with high accuracy and robust generalization.

Training on a chemically diverse dataset of over 39 000 compounds, our models achieve correlation

coefficients (r) between 0.77 and 0.88 and mean absolute errors (MAE) below 0.1 eV for DEST and 0.02

for f on unseen test data. The reliability of the PIML models is further validated via leave-one-out cross-

validation and external datasets, including 28 experimentally reported emitters, for which our model

outperforms state-of-the-art quantum chemical and ML approaches. Beyond predictive accuracy,

integrating interpretability tools reveals the exchange integral, dynamic spin polarization, and excited-

state energies as dominant factors controlling the target properties—offering mechanistic insights often

inaccessible in standard black-box models. Finally, leveraging the predictive power of the trained models,

we performed high-throughput screening of 400 newly designed TADF emitters, successfully identifying

promising candidates with optimal DEST and f combinations for OLED applications. This study highlights

the strength of combining physical intuition with data-driven modeling, offering an efficient, scalable,

and interpretable route for accelerating the discovery of next-generation optoelectronic materials.
1 Introduction

Organic light-emitting diodes (OLEDs) rely on efficient emitter
materials, which are crucial in determining device
performance.1–8 Conventional uorescent emitters suffer from
limited internal quantum efficiency (IQE) due to the restriction
of radiative recombination to singlet excitons.9–14 In contrast,
phosphorescent materials15–18 achieve near-unity IQE by har-
nessing both singlet and triplet excitons. However, the pro-
longed triplet-state lifetime in phosphorescent materials leads
to efficiency roll-off and long-term stability issues. To overcome
these challenges, alternative emissive mechanisms such as
thermally activated delayed uorescence (TADF)1–3,19,20 and
inverted singlet–triplet (INVEST) emission21–24 have emerged.
These mechanisms exploit reverse intersystem crossing (RISC)
enabled by small singlet–triplet energy gaps (DEST), facilitating
efficient radiative decay. However, minimizing DEST oen
results in a spatially separated highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
e of Technology Gandhinagar, Gujarat,
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(LUMO), which in turn reduces the oscillator strength (f) and
lowers emission efficiency.3–8 This trade-off between DEST and f
is a fundamental challenge in designing next-generation OLED
emitters, necessitating a deeper understanding of electronic
structure–property relationships.

Computational chemistry plays a pivotal role in the discovery
of OLED materials.25–29 Density functional theory (DFT)
methods are widely used for electronic structure calculations
but oen fail to describe charge-transfer excitations and double-
excitation contributions accurately.30–32 Higher-level methods,
such as second-order algebraic diagrammatic construction
[ADC(2)] and coupled-cluster approaches, provide reliable DEST
predictions33 but are computationally prohibitive for large-scale
screening.26 Machine learning (ML) offers a promising alterna-
tive, enabling rapid property predictions based on molecular
descriptors.27–29,34,35 However, conventional ML models—such
as random forest, gradient boosting, and neural networks—
oen act as black-box predictors, lacking physical interpret-
ability.29,36,37 This limits their utility in understanding the
microscopic origins of emitter performance and makes it diffi-
cult to extract meaningful design principles.

To address these limitations, physics-informed machine
learning (PIML) integrates fundamental physical insights into
J. Mater. Chem. A
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predictive models, ensuring physically consistent and inter-
pretable results. In this work, we develop a physics-inspired
machine learning model to predict both DEST and f in TADF
and INVEST emitters. Our model incorporates domain knowl-
edge by leveraging the Sure-Independence Screening and
Sparsifying Operator (SISSO) framework38,39 to identify low-
dimensional physically meaningful descriptors derived from
the semi-empirical Pariser–Parr–Pople (PPP) method.40–42 The
novelty of our approach lies in combining semi-empirical
quantum chemical methods with PIML to achieve prediction
accuracy comparable to high-level conguration interaction
singles and doubles [CIS(D)/cc-pvDZ] method calculations at
a fraction of the computational cost. Moreover, our method
provides physical interpretability by linking the target proper-
ties directly to fundamental molecular descriptors such as
exchange integrals (K), HOMO–LUMO overlap (S), and dynamic
spin polarization (DSP, P). The same set of descriptors is used to
model both DEST and f, reecting the common physical origin of
these two quantities.

Our model was trained on a dataset of approximately 39 000
TADF and INVEST emitters, achieving correlation coefficients
(r) between 0.77 and 0.88 for both DEST and f predictions, with
mean absolute errors (MAE) below 0.1 eV for DEST and 0.02 for f
on the test set. The robustness of the model was validated using
leave-one-out cross-validation (LOOCV) and external dataset
testing, demonstrating consistent predictive performance.
Additionally, applying the model to an experimental dataset of
28 emitters with reported singlet–triplet gaps yielded a root
mean square error (RMSE) of 0.054 eV, MAE of 0.046 eV, and
maximum absolute error (MaxAE) of 0.086 eV—signicantly
outperforming previous high-level quantum mechanical
methods33,43 and machine learning models.44–46 These results
demonstrate that our physics-inspired model not only enhances
predictive accuracy but also reduces computational costs,
making it suitable for large-scale screening. The practical utility
of this framework was further exemplied through high-
throughput screening of 400 newly designed emitters, which
successfully identied a subset of candidates with optimal
combinations of DEST and oscillator strength for high-efficiency
OLED applications. To gain deeper insights, we employed
SHapley Additive exPlanations (SHAP), joint distribution plots,
and multivariate analysis, which consistently highlighted the
exchange integral as the primary factor governing both DEST
and oscillator strength—a key feature oen underrepresented
in conventional ML models.44–46 By leveraging a semi-empirical
dataset with computational costs several orders of magnitude
lower than high-level ab initio methods, our approach achieves
prediction accuracies comparable to CIS(D). This scalable,
interpretable framework bridges the gap between computa-
tional efficiency and predictive accuracy, offering a practical
and physically grounded platform for next-generation OLED
emitter discovery.

2 Computational details

The computational workow, depicted in Fig. 1, outlines
a systematic approach for selecting and screening key
J. Mater. Chem. A
descriptors that govern the target properties DEST and f. These
descriptors include singlet (ES1) and triplet (ET1

) energies,
HOMO–LUMO overlap (S), exchange integral (K), and dynamic
spin polarization (P), which capture the underlying physics of
TADF and INVEST emitters. The target values, DEST and f, were
derived from a benchmark dataset by Pollice et al.,26 originally
computed using conguration interaction singles and doubles
[CIS(D)]. To balance computational efficiency with molecular
diversity, we curated a representative subset comprising 39 192
compounds for DEST (Dataset-I) and 31 234 compounds for f
(Dataset-II) for model training and testing. The selected dataset
encompasses both 4np (anti-aromatic) and (4n + 2)p (aromatic)
electron systems, with ring sizes ranging from four to fourteen
members and including various fused-ring architectures.
Nitrogen is the predominant heteroatom in these structures,
reecting common designmotifs in TADF and INVEST emitters.
The dataset-I identied 21 882 compounds (55.8%) as conven-
tional TADF molecules, while the remaining 17 310 compounds
(44.2%) were classied as INVEST emitters. This comprehensive
molecular representation ensures that the dataset captures
both typical and inverted singlet–triplet gap systems, thereby
enhancing the generalizability of the resulting machine-
learning models.
2.1 Data set compilation: Pariser–Parr–Pople descriptors

Ground-state geometries and excited-state properties, including
the singlet–triplet energy gap, oscillator strength, and molec-
ular structures, were sourced from ref. 26. These optimized
geometries served as input for computing key descriptors using
the Pariser–Parr–Pople model.40–42 The distribution of PPP-
derived descriptors—ES1, ET1

, K, P, and S—is illustrated in
Fig. 2. The singlet and triplet excitation energies (ES1 and ET1

) are
observed up to approximately 0.15 eV and 0.1 eV, respectively.
Both distributions exhibit distinct features with multiple
localized maxima rather than a smooth unimodal trend (Fig. 2a
and b). The exchange integral (K) is concentrated between 0.0
and 0.04 eV, with an asymmetric distribution skewed towards
lower values (Fig. 2c). The distribution of P spans from
approximately −0.01 eV to 0.005 eV, exhibiting multiple peaks
(Fig. 2d). The HOMO–LUMO overlap (S) varies broadly from 0.3
to 1.0 eV, forming a right-skewed distribution with a predomi-
nant peak around 0.7 (Fig. 2e).
2.2 Data set compilation: target properties

We also analyzed the distribution of target properties—oscil-
lator strength and singlet–triplet energy gap. The DEST values
range from −0.68 to 0.80 eV (Fig. 2f). In contrast, the oscillator
strength values predominantly fall within 0.0003 to 0.45,
exhibiting a skewed distribution with a peak at lower values
(Fig. 2g). Statistical analysis further supports this trend: the
mean and median for DEST are 0.081 and 0.122 eV, while for f,
they are 0.053 and 0.038, respectively. The standard deviations
for DEST (0.309 eV) and f (0.048) indicate moderate variability
within the dataset. The combination of these distribution
characteristics ensures a well-structured dataset, facilitating ML
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Schematic overview of the computational framework adopted in this work.

Fig. 2 Distribution of the absolute values of various properties. Panels (a)–(e) display the descriptors, including the singlet (ES1) and triplet (ET1
)

energies, exchange integral (K), dynamic spin polarization (P), and the HOMO–LUMO overlap (S), all derived using the Pariser–Parr–Pople semi-
empirical method.40–42 Panels (f) and (g) illustrate the target quantities, including the singlet–triplet energy gap (DEST) and oscillator strength (f),
which were obtained using CIS(D)/cc-pvDZ level of theory, as reported in ref. 26.
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model training and improving the predictive accuracy and
robustness of the framework.
2.3 SISSO-based modeling

To establish data-driven relationships between the PPP
descriptors and the target properties, we employed the SISSO++
algorithm.38,39 This method is particularly valuable for identi-
fying explicit functional forms that connect descriptors to target
quantities. SISSO formulates the predictive model as y = f(F),
where F = [f1, f2, ., fn] represents the essential descriptors,
and y denotes the target property to be predicted. Given
a dataset of N training samples, the algorithm assumes that y
can be approximated as a combination of simple mathematical
functions applied to primary descriptors. To construct these
functions, SISSO recursively employs fundamental operations
This journal is © The Royal Society of Chemistry 2025
such as addition, subtraction, multiplication, and division
alongside more complex transformations, including absolute
values, exponentials, logarithms, squaring, cubing, square and
cube roots, and trigonometric functions. At each iteration,
SISSO selects the most relevant feature transformations by
maximizing their correlation with the target property or resid-
uals from the previous step. This iterative renement ensures
that the model progressively captures essential nonlinear
dependencies. The nal model is constructed as an optimal
linear combination of selected nonlinear transformations. To
prevent overtting, model complexity is regulated using
‘0-regularization, which ensures sparsity by limiting the
number of active features.

The model's predictive performance was assessed using
standard error metrics, including RMSE, maximum absolute
J. Mater. Chem. A
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error, and Pearson correlation coefficient. The RMSE was
dened as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi � ŷiÞ2
vuut ; (1)

where yi and ŷi are the actual and predicted values for the i-th
sample, respectively. Although models with up to ve dimen-
sions were initially explored, we adopted a 4D model (f4D),
balancing accuracy and computational efficiency. The resulting
equations directly relate PPP descriptors to DEST and f,
providing a transparent and interpretable framework for pre-
dicting emitter properties.
2.4 Physics informed machine learning

Building on the SISSO-derived 4D equations, we developed
a physics-informedmachine learning framework that integrates
symbolic physical relations directly into a customized gradient
boosting regressor. The SISSO-derived 4D expression, including
its coefficients, is embedded in the loss function to enforce
physically meaningful constraints and improve generalizability.
The total loss combines the traditional Mean Squared Error
(MSE) with a physics-based penalty term:

Loss function ¼ 1

n

Xn

i¼1

ðyi � ŷiÞ2 þ f 4D (2)

where n is the number of samples, yi and ŷi denote the actual
and predicted values, and f4D encodes the SISSO-derived
expression. This formulation guides the model to balance
data-driven predictions with quantum-mechanical
constraints.

The model was trained on 80% of the dataset and validated
on the remaining 20%. The input descriptors—ES1, ET1

, K, P, and
S—were independently standardized to preserve physical
interpretability. Hyperparameter optimization was performed
using Optuna's Tree-structured Parzen Estimator (TPE) algo-
rithm, maximizing the Pearson correlation on the validation
set.47 Model training includes complete reproducibility via
logging, seed control, and conguration les. All code and data
are publicly available via GitHub. A comprehensive PIML
architecture with schematic overview and workow is presented
in Section S1, Fig. S1 and S2 of the SI.
3 Results and discussion

The distribution of the target and dependent variables, previ-
ously described in the methodology section, provides the
foundation for our model development. To predict DEST, we
designed three distinct models: one for positive DEST values,
negative DEST values, and a third for the entire DEST range. This
stratied approach aims to explore whether the selected
descriptors exert differential inuence on positive and negative
DEST values, thereby enhancing interpretability. In contrast, for
oscillator strength and the full DEST range, we developed single,
unied models using the entire dataset to capture broader
trends and dependencies. The subsequent sections present
J. Mater. Chem. A
a detailed evaluation of each model, offering insights into their
predictive performance, interpretability, and underlying phys-
ical implications.
3.1 Emitters with positive S1–T1 gap (DEST
+)

We initiated our calculations with SISSO modeling, exploring
dimensionalities ranging from one to ve. Upon comparing the
models, we observed that the four-dimensional (4D) and ve-
dimensional (5D) models exhibited nearly identical accuracy.
However, the 4D model was computationally more efficient
while maintaining comparable predictive performance. There-
fore, we focused our analysis on models between one and four
dimensions. Notably, as the dimensionality increased, the
complexity of the resulting equations also grew. This increase in
complexity, however, was accompanied by a marked improve-
ment in Pearson correlation, along with a substantial reduction
in the maxAE and RMSE. These trends emphasize the impor-
tance of balancing computational cost and prediction accuracy
when selecting the optimal model. Performance metrics for the
1D, 2D, and 3D models are summarized in Table S1, while the
performance of the 4D model is detailed in Table 1. For the
positive DEST values, the 4D model achieved an RMSE of
0.108 eV, a maxAE of 0.508 eV, and a Pearson correlation coef-
cient (r) of 0.809. The corresponding equation, which relates
the target quantities to the selected descriptors and their coef-
cients, is also presented in Table 1. Additionally, Fig. 3a shows
the SISSOmodel's predictive performance for DEST

+, illustrating
the reasonably strong correlation between the predicted and
actual values.

Despite these promising results, the relatively high RMSE
and maxAE suggest room for further renement. To improve
predictive accuracy, we integrated the SISSO-derived equation
(see Table 1) as an additional loss function within a PIML
framework based on a custom gradient boosting algorithm.
This hybrid approach aimed to leverage both the simplicity of
analytical descriptor-based modeling and the exibility of
machine learning to capture complex nonlinear relationships.
The performance of the PIML model, tested on an unseen
dataset, is shown in Fig. 3b. Remarkably, the PIML model
achieved a correlation coefficient (r) of 0.86, surpassing the
direct SISSO model (Fig. 3a). Furthermore, the mean absolute
error (MAE) and RMSE were 0.07 eV and 0.09 eV, respectively,
indicating a substantial enhancement in predictive accuracy.
The corresponding training correlation plot is provided in
Fig. S3, and the detailed metrics are summarized in Table 2.

To further validate the robustness of the PIML model, we
employed leave-one-out cross-validation. LOOCV is a rigorous
evaluation method wherein each data point is iteratively
designated as the test set while the model is trained on the
remaining data points. For a dataset containing N data points,
this process involves training the model N times, using N − 1
data points for training and the remaining one for validation.
This approach ensures that every data point contributes to the
validation process, thus providing an unbiased assessment of
the model's performance. The LOOCV results conrm the
robustness of the PIML model, yielding a correlation coefficient
This journal is © The Royal Society of Chemistry 2025
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Table 1 SISSO fourth-dimensional (f4D) model parameters for singlet–triplet properties: DEST
+, DEST

−, DEST, and f. Listed are the descriptor
coefficients (c0, a0, a1, a2, a3) along with the model performance metrics: RMSE, MaxAE, and correlation coefficient (r)

Model (f4D) c0 a0 a1 a2 a3 RMSE MaxAE r

DEST
þ ¼ c0 þ a0ð

ffiffiffiffiffiffiffi
ET1

3
p � lnSÞ

þa1 � ðS6 � S � PÞ þ a2

�ð��ðP� KÞ � K3
��Þ

þa3 � ðK=SÞ3

2.909 × 10−1 4.739 × 10−1 −1.350 × 102 −2.067 × 103 3.204 × 103 0.108 0.508 0.809

DEST
− = c0 + a0(S

2/jP − Kj) + a1
× ((P/K)/jP − Kj) + a2
× ((K/S) × P × K) + a3
× (exp(ET1

) − jP − Kj)

−7.816 × 100 1.139 × 10−3 −2.865 × 104 −2.253 × 100 2.138 × 100 0.076 0.393 0.665

DEST ¼ c0 þ a0ðET1
3 � S � PÞ þ a1

�ðS6=K2Þ þ a2 � ð�� ffiffiffiffiffiffiffi
ET1

3
p

�ðS � ET1Þ
��Þ þ a3 � ðK3 � lnSÞ

−2.396 × 10−1 1.918 × 105 7.829 × 10−5 4.598 × 10−1 −4.059 × 104 0.207 1.088 0.747

f = c0 + a0(exp(−(S/K))) + a1
× ((K/S) × jPj) + a2 × (jK − ET1

j
− (S × ET1

)) + a3 × (K2 × ln S)

2.310 × 10−2 −1.680 × 107 −2.231 × 102 1.096 × 100 −3.368 × 102 0.034 0.341 0.714

Fig. 3 Model evaluation and interpretability analysis for DEST
+ prediction: (a) SISSO model performance, (b) PIML model performance on the

testing dataset, (c) leave-one-out cross-validation results for model robustness assessment, and (d) SHAP analysis illustrating the feature
contributions to DEST

+ predictions.

This journal is © The Royal Society of Chemistry 2025 J. Mater. Chem. A
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Table 2 Performance metrics for PIML predictions: the table
summarizes the correlation coefficient (r), mean absolute error (MAE),
and root mean squared error (RMSE) across three validation
methods—test set performance (PIMLtest), training set performance
(PIMLtrain), and Leave-One-Out Cross-Validation (LOOCV)

Target property Metrics PIMLtest PIMLtrain LOOCV

DEST
+ r 0.86 0.93 0.86

MAE 0.07 0.05 0.07
RMSE 0.09 0.06 0.09

DEST
− r 0.77 0.87 0.77

MAE 0.05 0.04 0.05
RMSE 0.06 0.05 0.06

DEST r 0.88 0.95 0.88
MAE 0.11 0.08 0.11
RMSE 0.14 0.10 0.14

f r 0.84 0.93 0.84
MAE 0.02 0.01 0.02
RMSE 0.03 0.01 0.03
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of 0.86, consistent with the testing results (Fig. 3c). Additionally,
the MAE and RMSE values remained at 0.07 eV and 0.09 eV,
respectively (see Table 2), below the 0.1 eV benchmark. These
ndings reinforce the reliability and predictive accuracy of the
PIML model, underscoring its ability to capture the underlying
physical trends governing DEST

+. This strong performance
demonstrates the effectiveness of combining descriptor-based
SISSO modeling with ML techniques to improve predictive
accuracy while maintaining interpretability.

We performed SHAP analysis alongside additional multi-
variate techniques to further interpret the PIML model and
Fig. 4 Joint distribution plots illustrating the correlations between individ
contours and correlation coefficients (r) displayed in each subplot to qu

J. Mater. Chem. A
understand the underlying physics driving the prediction of
positive singlet–triplet energy gaps (DEST

+). These analyses aim
to quantify individual descriptors' relative contributions and
interactions, offering a detailed understanding of the model's
internal logic and alignment with physical principles. The SHAP
summary plot (Fig. 3d) reveals a distinct hierarchy among the
ve descriptors, highlighting their roles in inuencing the
predicted energy gaps. The exchange integral (K) stands out as
the most inuential descriptor. High values of K (denoted in
red) consistently lead to substantial positive SHAP values. This
observation aligns with fundamental quantum mechanical
intuition—K quanties the energy associated with electron
exchange and is directly related to the energetic cost of
promoting an electron from a singlet to a triplet state. Inter-
estingly, the SHAP distribution for K is strongly skewed, with
positive contributions far outweighing negative ones, under-
scoring its unidirectional and dominant impact on increasing
DEST

+. In contrast, the singlet energy shows a more intricate
pattern, with high and low values producing mixed SHAP
effects. This suggests that ES1's impact on DEST

+ is context-
dependent, potentially interacting with other variables non-
linearly. The triplet energy, however, exhibits a more predict-
able inverse relationship: higher ET1

values generally
correspond to negative SHAP contributions, reecting the
physical expectation that raising the triplet energy compresses
the singlet–triplet gap. The overlap integral (S) and dynamic
spin polarization (P) show more balanced SHAP distributions
around zero but tend to contribute positively, especially for
higher values.
ual descriptors and positiveDEST
+ values, with kernel density estimation

antify the strength of the linear relationships.

This journal is © The Royal Society of Chemistry 2025
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To complement the SHAP results, we analyzed the joint
distribution plots of each descriptor with the reference DEST

+

values, as shown in Fig. 4. These plots corroborate the SHAP
ndings, revealing strong correlations for several features. The
exchange integral K exhibits the strongest correlation (r = 0.62),
followed closely by P (r = 0.57). Notably, the high correlation of
P is unexpected given its lowest SHAP ranking, suggesting that it
may play a synergistic role in concert with other descriptors.
The overlap integral S shows a moderate positive correlation (r
= 0.31), while ES1 displays a weaker correlation (r = 0.25). ET1

again shows a slight negative correlation (r = −0.11), consistent
with both SHAP and physical interpretation. Interestingly,
bimodal distributions in several of these descriptors indicate
the presence of two distinct electronic state populations within
the dataset, shedding light on the structural and electronic
diversity of TADF emitters.

We further explored these descriptor interdependencies
using Partial Least Squares (PLS) and Supervised PCA (SPCA)
analyses to identify low-dimensional representations that retain
most of the model's predictive power. As summarized in Table
S2, the rst PLS component alone accounts for 95.5% of the
variance in the target variable while explaining 45.6% of the
variance in the features. This component is heavily weighted by
K (0.66), P (0.60), and S (0.33), with moderate inuence from ES1
(0.26) and a small negative loading from ET1

(−0.12). This
highlights the central role of exchange and spin polarization
effects in governing DEST

+. Similarly, the SPCA analysis iden-
ties K (0.72) and P (0.65) as the dominant contributors to the
rst component, which captures 74.8% of the total variance.
The second component, explaining 13.4%, is shaped by S (0.60)
and ES1 (0.55), suggesting a secondary structure in the data
related to orbital overlap and singlet energy levels. Collectively,
these two components explain nearly 90% of the total variance,
demonstrating that the essential physical factors inuencing
DEST

+ can be represented in a reduced two-dimensional space
driven primarily by K and P.

Taken together, these results provide strong, converging
evidence for the key role of the exchange integral in tuning
singlet–triplet gaps, with signicant but more subtle contribu-
tions from spin polarization, orbital overlap, and excited-state
energies. From a molecular design perspective, enhancing K
provides a direct and effective strategy for widening the DEST

+

gap, a critical factor for achieving efficient TADF emission. The
prominence of P in both correlation and multivariate analyses
further suggests that spin dynamics merit careful consideration.
3.2 Emitters with negative S1–T1 gap (DEST
−)

For emitters with negative singlet–triplet energy gaps, we
applied the same modeling protocol used for positive gaps
(DEST

+). The SISSO modeling results, including the derived
equations, coefficients, and performance metrics, are summa-
rized in Table 1. Notably, the SISSO model for DEST

− achieved
RMSE and maxAE values of 0.076 and 0.393, respectively, lower
than those obtained for DEST

+. However, the Pearson correlation
coefficient (r) for DEST

− was 0.665, reecting room for further
improvement despite the reduction in RMSE and maxAE. We
This journal is © The Royal Society of Chemistry 2025
integrated the SISSO-derived equation into a PIML model,
resulting in signicant improvements in predictive accuracy, as
evidenced by the metrics reported in Table 2. The correlation
coefficient r increased from 0.665 to 0.77 (testing set), while
MAE and RMSE yielded 0.05 and 0.06, respectively. Fig. 5a and
b illustrate the SISSO predictions and PIML test results,
respectively, with Fig. S4 presenting the corresponding training
predictions. We also evaluated the model's robustness using
LOOCV, yielding r = 0.77, MAE = 0.05, and RMSE = 0.06,
consistent with the PIML test set results (Table 2 and Fig. 5c).

We employed the same suite of model interpretable tech-
niques used for positive gaps to interpret the PIML trained on
emitters with negative singlet–triplet energy gaps. The goal was
to uncover how the quantum descriptors' relative importance
and mechanistic roles shi in this inverted regime. The SHAP
summary plot (Fig. 5d) reveals a striking reordering of feature
importance. Unlike the positive gap regime, where the exchange
integral dominates, the singlet and triplet state energies emerge
as the primary contributors. Both descriptors exhibit symmetric
trends: higher values (in red) are consistently associated with
more negative SHAP values, reinforcing their cooperative role in
widening the negative gap. Interestingly, K plays a reversed role.
While it amplied positive gaps previously, in this regime, lower
K values (in blue) now contribute to larger negative gaps, as
reected by their negative SHAP values. In contrast, higher K
values tend to suppress the extent of negativity. The overlap
integral and dynamic spin polarization remain comparatively
minor contributors, with narrow SHAP distributions centered
around zero, signaling limited impact in the negative gap
context.

These trends are quantitatively reinforced through joint
distribution analysis. The strongest correlations are observed
for ET1

(r = −0.54) and ES1 (r = −0.52), highlighting their nearly
equal and inverse relationships with DEST

− (Fig. 6). This marks
a fundamental departure from the positive gap model, where
exchange interactions held primacy. K shows a mild positive
correlation (r = 0.18), mirroring its dampening effect on nega-
tive gaps, while S (r = −0.10) and P (r = −0.04) display minimal
direct associations with the target variable. As in the earlier
case, bimodal distributions across several descriptors suggest
the existence of two electronically distinct classes of molecules
responsible for achieving negative gaps.

Multivariate decomposition via PLS and SPCA further
underscores themechanistic shi. As evident from Table S3, the
rst PLS component captures a remarkable 99.2% of target
variance, with strong positive loadings for ET1

(0.70) and ES1
(0.67), and a modest negative contribution from K (−0.23). This
singular component effectively encapsulates the governing
physics. The SPCA results are in close agreement: the rst
component explains 91.8% of the variance, again dominated by
ES1 (0.69) and ET1

(0.72). The consistency of these ndings across
methods conrms that excited state energies are the central
drivers of negative DEST predictions.

These results indicate a fundamental transition in the elec-
tronic structure regime. While positive singlet–triplet gaps are
shaped primarily by exchange interactions, negative gaps are
governed by the absolute positions of the singlet and triplet
J. Mater. Chem. A
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Fig. 5 Model evaluation and interpretability analysis for DEST
− prediction: (a) SISSO model performance, (b) PIML model performance on the

testing dataset, (c) leave-one-out cross-validation results for model robustness assessment, and (d) SHAP analysis illustrating the feature
contributions to DEST

− predictions.
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excited states. From a design standpoint, this implies that to
engineer molecules with negative singlet–triplet gaps—relevant
for applications requiring inverted energy levels—one must
focus on simultaneously elevating both ES1 and ET1

while
minimizing exchange coupling. The near-equivalence of ES1 and
ET1

in all analyses suggests that they should be considered
a coupled pair, not in isolation.

3.3 Combined model for DEST

Aer separately analyzing the impact of different descriptors on
DEST for both positive and negative cases, we extended our
approach to a unied model incorporating all data points.
Specically, we sought to determine whether the model accu-
racy improves and if the consistency in descriptor importance is
maintained when predicting DEST for the entire dataset. The key
metrics from the SISSO modeling for this combined approach
are summarized in Table 1. The combined model achieves
a Pearson correlation coefficient of 0.747, surpassing the
J. Mater. Chem. A
negative DEST model but falling short of the positive DEST
model. Additionally, the maxAE and RMSE values are 1.088 and
0.207, respectively, higher than those in the individual models.
Fig. 7a depicts the performance of the SISSO model for the
combined dataset, while Fig. 7b shows the testing performance
of the PIML model. The corresponding training performance is
compared in Fig. S5. The combined model's test and training
scores are presented in Table 2, where it achieves a Pearson
correlation coefficient of 0.88, which is the highest among the
three cases (positive, negative, and combined). However, its
MAE and RMSE values are 0.11 and 0.14, respectively. Fig. 7c
illustrates the LOOCV results, conrming a strong correlation
between the predicted and target values.

To generalize our insights across the full range of singlet–
triplet energy gaps, we applied the same SHAP and multivariate
analyses to the combined dataset of positive and negative values.
This unied approach captures the complex descriptor interac-
tions that govern both conventional and INVEST-type TADF
This journal is © The Royal Society of Chemistry 2025
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Fig. 6 Joint distribution plots illustrating the correlations between individual descriptors and DEST
− values, with kernel density estimation

contours and correlation coefficients (r) displayed in each subplot to quantify the strength of the linear relationships.

Paper Journal of Materials Chemistry A

Pu
bl

is
he

d 
on

 2
6 

A
ug

us
t 2

02
5.

 D
ow

nl
oa

de
d 

on
 9

/5
/2

02
5 

2:
19

:2
0 

PM
. 

View Article Online
emitters. Fig. 7d presents the SHAP summary plot, where the
exchange integral continues to dominate the descriptor hier-
archy. Its contribution exhibits pronounced asymmetry: large K
values (in red) strongly favor positive SHAP values, reinforcing
their inuence in widening DEST, especially in conventional
emitters. However, its effect diminishes in negative-gap systems,
as indicated by a narrower and less impactful SHAP distribution.
This attenuation reects the altered electronic landscape of
INVEST molecules, where inverted gaps arise from a different
interplay of singlet energy and orbital reorganization, reducing
the marginal role of exchange interactions.

The singlet excitation energy reveals a bipolar SHAP distri-
bution, with high values tending toward negative SHAP contri-
butions and low values contributing positively. This reects its
dual role: promoting inverted gaps in INVEST-like systems
while supporting positive gaps in conventional architectures.
The overlap integral also demonstrates a dispersed contribution
pattern but with a net bias toward positive SHAP values,
consistent with its role in modulating orbital coupling. The
triplet excitation energy exhibits a wide SHAP spread, where
higher values predominantly yield negative SHAP contribu-
tions, underscoring their association with reduced DEST in
specic congurations. Polarization, while ranking lowest in
the overall SHAP importance, still shows a context-dependent
contribution. Its SHAP values are symmetrically distributed
and centered near zero, with a mild skew toward negative
contributions. This indicates a diminished but not negligible
role in the combined model, likely due to the descriptor's
variable relevance across chemically diverse TADF scaffolds.
This journal is © The Royal Society of Chemistry 2025
These SHAP-derived trends are quantitatively supported by
joint distribution plots, shown in Fig. 8. Among the descriptors,
K exhibits the strongest positive correlation with DEST (r = 0.60),
forming distinct bimodal clusters that separate conventional
(positive DEST) and INVEST (negative DEST) regimes. This bimo-
dality aligns with K's dominant SHAP ranking, where its asym-
metric contributions highlight its crucial role in conventional
systems while diminishing INVEST architectures. The excited-
state energies display contrasting correlation patterns. ET1

has
a moderate negative correlation with DEST (r = −0.33). Similarly,
ES1 exhibits a weak overall correlation (r = −0.04), yet its SHAP
distribution reveals a bipolar pattern, with both positive and
negative contributions balancing each other. This explains why
its linear correlation appears negligible despite its mechanistic
signicance. The overlap parameter shows a moderate positive
correlation with DEST (r = 0.37), with higher S values aligning
with positiveDEST systems. Interestingly, P positively correlates (r
= 0.43), which initially seems at odds with its bimodal SHAP
prole. However, closer inspection reveals a symmetric SHAP
distribution centered near zero, where high (red) and low (blue)
values contribute across the spectrum. This explains P's reduced
aggregate importance in the combined model despite its pres-
ence in DEST = 2K + P: its inuence is highly context-dependent,
varying across molecular architectures.

Multivariate projections reinforce these ndings, as
summarized in Table S4. The rst PLS component captures
80.3% of the variance, with substantial positive contributions
from K, P, and S, and negative weights from ET1

and ES1. This
axis effectively separates molecules based on their dominant
J. Mater. Chem. A
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Fig. 7 Model evaluation and interpretability analysis for DEST prediction: (a) SISSO model performance, (b) PIML model performance on the
testing dataset, (c) Leave-One-Out Cross-Validation (LOOCV) results for model robustness assessment, and (d) SHAP analysis illustrating the
feature contributions to DEST predictions.
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gap-driving mechanisms. The second and third components
(3.1% and 5.4% variance, respectively) capture subtler interac-
tions, particularly between polarization and excited state ener-
gies. SPCA reveals similar patterns: the rst component (67.6%)
is dominated by K and P, while the second (18.4%) emphasizes
ET1

and S. Together, they account for over 85% of the total
variance, indicating that most of the underlying physics can be
captured within a two-dimensional descriptor space shaped by
exchange and excited-state characteristics.

Overall, these results establish that while K remains the
primary driver of DEST, its dominance is modulated by the
specic electronic conguration, particularly in molecules with
inverted gaps. The consistent presence of bimodal distributions
and shiing descriptor roles highlights the need for exible
models to accommodate both regimes. From a design stand-
point, tuning the exchange integral remains the most direct
route to gap modulation. However, achieving precise control—
especially in the negative-gap regime—requires a delicate
balancing of excited-state energies and orbital interactions. This
J. Mater. Chem. A
holistic view provides a foundation for rational design strategies
that span the entire landscape of TADF emitter architectures.
3.4 Oscillator strength (f)

Aer modeling and predicting DEST, our focus shied toward
investigating the oscillator strength, for which we developed
a combined model using all available data points. Table 1
summarizes the SISSOmodeling results for f, highlighting a fairly
strong correlation with selected descriptors (r = 0.714). The
model's accuracy is evident from its maxAE (0.341) and RMSE
(0.034), with the correlation plot shown in Fig. 9a. The perfor-
mance metrics for PIML are provided in Table 2. The correlation
coefficient signicantly increased to 0.84, while the RMSE and
MAE values yielded 0.03 and 0.02 for the test dataset. Fig. 9b
illustrates the test set correlation plot, while the training set
correlation is shown in Fig. S6. To validate the model's robust-
ness, we performed LOOCV, as illustrated in Fig. 9c, demon-
strating strong agreement between predicted and actual values.
This journal is © The Royal Society of Chemistry 2025

https://doi.org/10.1039/D5TA03374H


Fig. 8 Joint distribution plots illustrating the correlations between individual descriptors and combined DEST values, with kernel density esti-
mation contours and correlation coefficients (r) displayed in each subplot to quantify the strength of the linear relationships.
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The SHAP summary plot (Fig. 9d) establishes a clear
descriptor hierarchy for oscillator strength predictions. The
exchange integral dominates, displaying a consistently strong
positive inuence—higher K values (red) are associated with
signicant positive SHAP values. This directional trend affirms
K's role in enhancing oscillator strength via modulation of
transition dipole moments, which aligns with electronic struc-
ture principles. The sharp asymmetry in SHAP values further
underscores K's centrality to optical transition intensity. ES1
exhibits a bipolar SHAP distribution, reecting context-
dependent contributions that vary with molecular congura-
tions. ET1

, by contrast, consistently contributes negatively—
higher ET1

values reduce oscillator strength, likely due to
diminished singlet–triplet mixing. S and P show smaller but
non-negligible effects, both centered near zero, with P di-
splaying a slight skew toward positive contributions.

As evident from Fig. 10, joint distribution plots support these
insights: K exhibits the strongest correlation with oscillator
strength (r = 0.54), followed by P (r = 0.35) and S (r = 0.33). ET1

displays a modest inverse correlation (r = −0.24), while ES1
remains largely uncorrelated (r = 0.03). These trends point to
distinct electronic subpopulations governing oscillator strength,
reinforcing the diversity of contributing mechanisms. Multivar-
iate analyses further clarify these roles. In the PLS decomposition
(Table S5), the rst component explains 88% of target variance,
driven predominantly by K (0.74) and P (0.60), with a negative
weight from ET1

(−0.23). The second component (5.4%) is
dictated by S (0.94), suggesting a secondary contribution via
orbital overlap, while the third (2.27%) reects a combined
inuence of ES1 (0.84) and ET1

(0.53), highlighting energy-level
This journal is © The Royal Society of Chemistry 2025
dependent ne-tuning. SPCA corroborates these ndings. Its
rst component (78.5% variance) conrms K (0.79) and P (0.59)
as primary descriptors. The second (13.8%) reveals a competitive
interplay between P (0.77) and K (−0.56), suggesting
conguration-specic antagonism. The third (6%) again elevates
ET1

(0.79) and S (0.44), emphasizing tertiary mechanisms
involving excited state positioning and electronic overlap.

Altogether, these analyses converge on a robust mechanistic
model: the exchange integral is the key driver of oscillator
strength, supported by dynamic spin polarization and modu-
lated by ET1

and S in specic congurations. This reects an
intricate interdependence between exchange effects, excited
state energies, and spatial orbital interactions. From a design
standpoint, enhancing oscillator strength in TADF emitters
requires maximizing K and P while carefully managing ET1

.
Importantly, these parameters should not be tuned in isola-
tion—interdependencies highlighted by multivariate decom-
position indicate the need for coordinated optimization
strategies. By bridging machine learning interpretability with
quantum chemical theory, this analysis not only delivers accu-
rate oscillator strength predictions but also deepens our
mechanistic understanding, guiding the rational design of
TADF materials with superior light-matter coupling for
advanced optoelectronic applications.

3.5 Cross validation: external datasets

To thoroughly evaluate the diversity, predictive accuracy, and
robustness of our combined model for DEST and f, we extended
the validation process beyond LOOCV by testing the model on
external datasets. Specically, we utilized a dataset of
J. Mater. Chem. A
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Fig. 9 Model evaluation and interpretability analysis for f prediction: (a) SISSO model performance, (b) PIML model performance on the testing
dataset, (c) Leave-One-Out Cross-Validation (LOOCV) results for model robustness assessment, and (d) SHAP analysis illustrating the feature
contributions to f predictions.
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approximately 110 compounds, drawn from recent studies,22,23

where DEST values were computed at the CC2/aug-cc-pVDZ level
of theory—a level distinct from the one used for training the
model. We calculated the required ve descriptors for each
molecule in this dataset using PPP-based calculations and then
applied the combined model to predict DEST (Dataset-III). The
results, illustrated in Fig. 11, reveal a robust correlation between
the predicted and reference DEST values, with a correlation
coefficient of 0.80. The RMSE and MAE values also remained
below 0.1 eV, underscoring the model's strong predictive
capabilities across chemically diverse systems. To further assess
the model's accuracy, we conducted an independent evaluation
on a smaller dataset of 28 compounds, for which experimental
DEST values were available from previous studies (Dataset-
IV).4,48–60 The detailed results, summarized in Table S6, are
equally promising: the MAE and RMSE for this evaluation were
0.046 eV and 0.054 eV, respectively. These values are compa-
rable to—and, in most cases, outperform—results obtained
using more computationally demanding methods such as SCS-
J. Mater. Chem. A
CC2, STEOM-DLPNO-CCSD, and B2LYP.33,43 Notably, the
maximum absolute error remained below 0.1 eV, reaffirming
the robustness of our model.

Given the signicance of oscillator strength in emission
studies, we also sought to validate the model's predictive
performance for this property. However, because neither
experimental f values nor high-level computational results were
available in the literature for external datasets, we primarily
relied on LOOCV for validation. As part of this analysis, we
predicted oscillator strength values for the same set of 110
molecules, providing insights into f's variation across diverse
chemical structures (Fig. S7). Although this exercise did not
serve as an independent benchmark, it reinforces condence in
the model's broader applicability and predictive reliability.
Overall, the successful prediction of DEST for external datasets—
along with the consistency observed in LOOCV and test set
results for both DEST and f—demonstrates the model's robust-
ness, adaptability, and potential utility in future studies of
diverse molecular systems.
This journal is © The Royal Society of Chemistry 2025
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Fig. 10 Joint distribution plots illustrating the correlations between individual descriptors and negative f values, with kernel density estimation
contours and correlation coefficients (r) displayed in each subplot to quantify the strength of the linear relationships.
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3.6 High-throughput screening enabled by physics-informed
ML models

To further establish the practical utility of our physics-informed
machine learning models, we extended their application to the
high-throughput screening of unexplored emitters for organic
Fig. 11 External validation of the combined model for DEST predic-
tions. The scatter plot compares predicted DEST values against refer-
ence data from an independent dataset of 110 compounds computed
at the CC2/aug-cc-pVDZ level of theory.22,23 The strong correlation (r
= 0.80), along with RMSE and MAE values below 0.1 eV, demonstrates
the model's predictive accuracy and robustness across chemically
diverse systems.

This journal is © The Royal Society of Chemistry 2025
light-emitting diode applications. Building upon the predictive
reliability demonstrated in our prior work,34 we employed our
custom gradient boosting models—optimized for both singlet–
triplet energy gap and oscillator strength—to assess a newly
curated set of candidate molecules, herein referred to as
Dataset-V. This dataset comprises 400 computationally
designed TADF emitters generated through the systematic
recombination of high-performing molecular fragments
(Fig. S8) reported in the literature.21–23 These fragments, which
have been experimentally validated or computationally
demonstrated to contribute favorably to TADF or INVEST
behavior, were carefully selected to ensure chemical relevance
and structural diversity. Unique atomic tags were employed
during the assembly process to enable precise identication
and reliable reconstruction of the molecules. Symmetric and
asymmetric terminal fragment combinations were incorpo-
rated, enriching the chemical space explored through this
dataset. For each of these 400 emitters, all ve essential
descriptors were computed following the same protocol out-
lined in Section 2.1.

The outcomes of this screening exercise were both encour-
aging and informative. Our model predicted that 93.8% of the
designed compounds exhibit conventional TADF characteris-
tics, whereas 6.2% fall into the category of inverted singlet–
triplet gap emitters, representing a particularly intriguing
subclass for optoelectronic applications. The predicted DEST
values ranged from −0.13 eV to 0.28 eV, with a median value of
0.13 eV and an average of 0.12 eV. A standard deviation of
0.07 eV reects the internal consistency and reliability of the
model across this diverse chemical space. Similarly, the
J. Mater. Chem. A
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Fig. 12 Two-dimensional distribution of predicted singlet–triplet energy gap (DEST) and oscillator strength (f) for 400 computationally designed
emitters (Dataset-V). The predictions were generated using the optimized physics-informed gradient boosting models. The red vertical dotted
line separates the INVEST candidates from their conventional TADF counterparts.
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predicted f values spanned from 0.003 to 0.092, highlighting the
broad optoelectronic potential of these designs.

A two-dimensional distribution of the predicted DEST (x-axis)
and f (y-axis) for all 400 emitters is shown in Fig. 12. This plot
delineates a subset of promising candidates that strike a favor-
able balance between small singlet–triplet gaps and high oscil-
lator strengths. Among these, 44 emitters were identied as
especially promising, featuring DEST values below 0.2 eV and f
values exceeding 0.08—a combination indicative of superior
photophysical performance and suitability for high-efficiency
OLED applications. The molecular structures of the 12 prom-
ising candidates from this group are presented in Fig. S9, offering
concrete examples of how fragment-based design, coupled with
accurate PIML predictions, can accelerate material discovery.

To validate the reliability of our PIML model, we selected
four representative candidates and computed their DEST and f
values using the CIS(D) method in ORCA 5.0.3.61 As shown in
Table S7, the predicted singlet–triplet gaps show good agree-
ment with CIS(D) results, typically within 0.1 eV. While the
model slightly overestimates oscillator strengths, the overall
ranking and identication of promising emitters remain
consistent, supporting the model's robustness for high-
throughput screening.

In summary, this screening exercise underscores the
strength and robustness of our physics-informed machine
learning framework, which delivers accurate predictions and
enables efficient navigation of chemical space. By leveraging
physically meaningful descriptors derived from reliable
quantum-chemical approximations, this approach facilitates
the rapid identication of new emitter candidates, signicantly
reducing the computational cost and time typically associated
with excited-state property evaluation. Our results demonstrate
the potential of this strategy to drive accelerated discovery and
rational design of next-generation materials for organic
electronics.
J. Mater. Chem. A
3.7 Extended analyses: model robustness, descriptor
interpretability, and physical insight

We conducted a series of complementary analyses to evaluate
further the robustness, interpretability, and generalizability of
our physics-informed machine learning framework. These
efforts address potential concerns related to dataset composi-
tion, descriptor interdependencies, physical interpretability,
and benchmarking against existing models.

To assess the impact of class imbalance in our dataset
(55.8% TADF vs. 44.2% INVEST), we evaluated three mitigation
strategies: stratied sampling, class weighting, and under-
sampling with reweighting. Our baseline model, trained
without explicit imbalance correction, already achieved strong
performance (overall r = 0.881) with balanced accuracy across
classes, consistent with best practices for mild imbalance (ratio
∼1.26 : 1). The alternative strategies yielded only marginal
improvements (#0.09% in r) while slightly narrowing the
TADF–INVEST performance gap. Consequently, we retained the
baseline architecture as the default, as it preserves class
proportions without introducing synthetic bias. Full methodo-
logical details and comparative results are provided in Section
S2, Fig. S10, and Table S8.

To rule out the effects of multicollinearity among the ve
PPP-derived descriptors (ES1, ET1

, K, S, and P), we performed
correlation and variance ination factor (VIF) analyses. While
a strong correlation was observed between ES1 and ET1

(r =

0.905), all other pairs remained below jrj = 0.7, and corre-
sponding VIFs were within acceptable limits. A Gram–Schmidt
orthogonalization further conrmed that this collinearity could
be removed without affecting the descriptor matrix structure.
However, Optuna-guided hyperparameter tuning consistently
produced models with equivalent performance (DRMSE < 0.001
eV) on both native and orthogonalized inputs, demonstrating
that the Gradient Boosting model effectively regularizes the
This journal is © The Royal Society of Chemistry 2025
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modest correlation. As the remaining dependencies are physi-
cally interpretable and the native form retains quantum-
chemical transparency, we retain the original descriptors in
the nal model. Complete analyses are presented in Section S3,
Fig. S11 and S12.

To elucidate how molecular features inuence the exchange
integral (K), we examined structure–property relationships
through systematic variations in donor–acceptor geometry,
heteroatom substitution, and core aromaticity. Torsional scans
between donor and acceptor fragments revealed that both K and
the dynamic spin polarization (P) reach maxima at planar
geometries, highlighting the role of conjugation and orbital
overlap (Fig. S13). Density difference plots for ten representative
emitters demonstrated that subtle differences in orbital
topology can yield signicantly different K values, even for
molecules with similar charge transfer characteristics—
emphasizing the limitations of visual analysis alone (Fig. S14).
Furthermore, we found that sulfur-bridged compounds exhibit
larger dihedral angles than their oxygen-bridged counterparts,
which weakens planarity and reduces HOMO–LUMO overlap,
thereby lowering K (Fig. S15). Core aromaticity also modulates
conjugation: less aromatic units like pyrrole enhance K and P
relative to more aromatic benzene cores. Together, these results
provide a nuanced physical understanding of how geometry and
electronic structure modulate excited-state interactions,
offering rational strategies for tuning K in TADF emitters.

To benchmark our model against established physics-
enhanced methods, we implemented a D-ML approach using
SchNet62 neural networks trained on the same dataset and
descriptors. Compared to SchNet, our PIML model exhibited
signicantly higher accuracy (r = 0.88 vs. 0.61; MAE = 0.11 eV
vs. 0.20 eV) along with enhanced interpretability, efficiency, and
adherence to physical constraints—hallmarks of a robust and
integrated learning framework. A complete analysis is provided
in Section S4, Fig. S16, S17 and Table S9.

Finally, our model—built upon PPP-derived descriptors—
offers a computationally efficient yet accurate approach for
predicting singlet–triplet gaps and oscillator strengths at
a CIS(D)-level of delity. Unlike prior studies that relied solely
on quantum chemical screening,26 our method establishes
a physics-informed mapping from semi-empirical inputs to
excited-state properties. The model aligns well with reference
CIS(D) and experimental data, and its predictive utility was
further demonstrated by accurate inference on newly designed
molecules, underscoring its potential for prospective high-
throughput screening of organic emitters.

4 Conclusion

This study highlights the effectiveness of physics-informed
machine learning in accurately predicting key photophysical
properties—specically the singlet–triplet energy gap (DEST)
and oscillator strength (f)—that critically determine the
performance of both thermally activated delayed uorescence
and emerging inverted singlet–triplet emitters. Leveraging
a chemically diverse dataset of approximately 39 000 molecular
systems, we systematically developed dedicated models to
This journal is © The Royal Society of Chemistry 2025
address the prediction of positive, negative, and full-range DEST
values, enabling a comprehensive exploration of emitter types.
Interestingly, while property-specic models offer deeper
mechanistic insight into molecular behavior, their predictive
performance remains comparable to that of a unied,
combined model, suggesting that integrated learning strategies
can achieve both generality and computational efficiency
without sacricing interpretability.

Beyond predictive performance, interpretability tools
consistently revealed exchange interaction, dynamic spin
polarization, and excited-state energies as the key descriptors
governing both DEST and oscillator strength. In particular, the
central role of exchange interactions emerged as a recurring
theme across all models, reinforcing its mechanistic relevance
to both radiative and non-radiative pathways in emitter design.
This physical consistency across methods reinforces the reli-
ability of the learned relationships. Leveraging this framework,
we further demonstrated the practical utility of our models
through high-throughput screening of 400 newly designed
emitters. The screening successfully identied a promising
subset of candidates exhibiting favorable combinations of small
DEST and high oscillator strength, highlighting the model's
capability to accelerate the discovery of efficient TADF and
INVEST materials.

Altogether, our ndings underscore the importance of
embedding physical knowledge into machine learning models
to enhance predictive accuracy and interpretability. The
resulting framework not only enables rapid molecular
screening but also offers actionable design principles for the
targeted development of high-performance emitters. This work
manifests how data-driven and theory-guided approaches can
be integrated to bridge the gap between predictive modeling
and rational material innovation.
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values for a dataset of 28 molecules. Also, it contains PIML
architecture and workow, class imbalance analysis, multi-
collinearity assessment, D-ML framework, and density differ-
ence plot. See DOI: https://doi.org/10.1039/d5ta03374h.
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