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ABSTRACT: This work presents an efficient approach to
optimizing force field parameters for sulfone molecules using a
combination of genetic algorithms (GA) and Gaussian process
regression (GPR). Sulfone-based electrolytes are of significant

interest in energy storage applications, where accurate modeling of  jprovednccuraey =2 GAGPR  Yes [ selecion AP
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their structural and transport properties is essential. Traditional = o sisie ey

force field parametrization methods are often computationally
expensive and require extensive manual intervention. By
integrating GA and GPR, our active learning framework addresses
these challenges by achieving optimized parameters in 12 iterations
using only 300 data points, significantly outperforming previous
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attempts requiring thousands of iterations and parameters. We demonstrate the efficiency of our method through a comparison with
state-of-the-art techniques, including Bayesian Optimization. The optimized GA-GPR force field was validated against experimental
and reference data, including density, viscosity, diffusion coefficients, and surface tension. The results demonstrated excellent
agreement between GA-GPR predictions and experimental values, outperforming the widely used OPLS force field. The GA-GPR
model accurately captured both bulk and interfacial properties, effectively describing molecular mobility, caging effects, and
interfacial arrangements. Furthermore, the transferability of the GA-GPR force field across different temperatures and sulfone
structures underscores its robustness and versatility. Our study provides a reliable and transferable force field for sulfone molecules,
significantly enhancing the accuracy and efficiency of molecular simulations. This work establishes a strong foundation for future
machine learning-driven force field development, applicable to complex molecular systems.

1. INTRODUCTION

Lithium-ion batteries (LIBs) have become the cornerstone of
modern energy storage technologies due to their high energy
density and long cycle life.'* However, traditional LIBs that
rely on carbonate-based electrolytes encounter significant
challenges, such as poor thermal stability, slow charge—
discharge cycles, and volatility.”* These limitations hinder their
efficiency and long-term performance. In response to these
issues, researchers have explored the addition of organic
additives to high-concentration electrolytes (HCEs) as a
promising strategy to enhance battery performance.’”®
Among these additives, sulfones have emergi{ed as particularly
effective due to their unique properties.”””"" Sulfolane, a type
of sulfone, has been shown to improve the thermal stability and
electrochemical performance of HCEs, making it a valuable
candidate for next-generation LIBs.””'*”"7 The addition of
sulfones facilitates lithium-ion transport through a hopping
conduction mechanism,”'* which significantly enhances the
conductivity of the electrolyte, thus addressing the challenges
associated with traditional carbonate-based systems.

Among the sulfone family, additives such as sulfolane (SL),
dimethyl sulfone (DMS), ethyl methyl sulfone (EMS), and 3-
methyl sulfolane (MSL) are frequently used to enhance the
performance of these electrolytes."®™" Recent studies have
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increasingly focused on HCEs, which may consist of binary,
ternary, or even more complex mixtures, depending on the
combination of different additives.">"*" The challenge,
however, lies in the sheer complexity of these mixtures.
Including various additives at different concentrations
introduces a vast number of potential combinations, with no
established guidelines to determine the optimal choice of
additives or their concentrations for a given lithium salt. This
complexity makes it difficult to predict which combinations
yield the most effective electrolytic properties. Given these
challenges, there is a growing need for a computationally
efficient approach to screen and identify the most promising
electrolyte mixtures from the myriad possibilities. To achieve
this, it is crucial to accurately simulate the structural and
dynamical properties of each system, ensuring that predictions
are both reliable and precise.
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Figure 1. Molecular structures and atom types of the investigated sulfone molecules in this study: (a) sulfolane (SL), (b) 3-methyl sulfolane
(MSL), (c) dimethyl sulfone (DMS), and (d) ethyl methyl sulfone (EMS).

The choice of simulation method plays a critical role in
accurately depicting the bulk dynamics of electrolyte systems.
While quantum mechanical (QM) simulations offer high
accuracy, they are limited by the computational cost, which
restricts the size of the system and the time scale that can be
simulated. This limitation makes it difficult to capture the
dynamic correlations over time, which are essential for
understanding the behavior of complex electrolyte mixtures.
On the other hand, classical molecular dynamics (MD)
simulations can overcome these challenges by allowing larger
system sizes and longer simulation times, provided that the
atomic charges and parameters defining nonbonded and
bonded interactions are appropriately chosen. However,
while sulfones share similar chemical structures, they exhibit
significant differences in their physicochemical properties,
requiring distinct treatment in simulations.”” This means that
generalized force fields (FFs), such as OPLS**** or GAFF,”
are often inadequate for accurately modeling these molecules.

The primary issue with existing force fields like OPLS™>** is
their inaccurate charge distribution, which can distort the bulk
dynamics of the system. Additionally, the structural arrange-
ment of these molecules, governed by van der Waals and
electrostatic interactions, is sensitive to the parameters used in
simulations. Except for sulfolane, computational studies on
other sulfones, such as dimethyl sulfone, ethyl methyl sulfone,
and 3-methyl sulfolane, are sparse or nonexistent.'**° This gap
in the literature underscores the need to develop specific
parameters for each sulfone before tackling more complex
mixtures.

The traditional force field parametrization approach often
involves manually tuning parameters based on QM calcu-
lations.' #*°~>* While this method can yield accurate results, it
is time-consuming and inefficient, particularly when applied to
a series of structurally similar molecules. For example, previous
efforts have successfully parametrized sulfolane using manual
techniques, but this approach lacks scalability for more
extensive studies.”® An alternative to manual parametrization
is using semiautomated workflows, as discussed in the
literature.””>> These methods have achieved accuracy
comparable to ab initio references but still require multiple
iterations of simulations, reducing overall ei‘ﬁciency.30 More-
over, building workflows that converge quickly often requires
the generation of large input data sets, which shifts the burden
of manual effort to the initial stages of the process rather than
eliminating it.”

In recent years, machine learning (ML) approaches have
been explored to refine force field (FF) parameters, offering
improved efficiency.””*"**7*® Notably, Bayesian Optimiza-
tion (BO) has demonstrated promise in effectively navigating
parameter spaces’ '’ However, these methods often depend

heavily on large initial data sets to train the model, which can
be expensive and time-consuming to gather. The need for
extensive training data can diminish the practical advantages of
ML-based parametrization, particularly when the goal is to
minimize computational and manual effort. Given these
challenges, we aimed to develop a parametrization method
that balances efficiency with accuracy. By reducing reliance on
manual intervention and optimizing the workflow, we sought
to create a more streamlined and effective approach to FF
development that leverages the strengths of machine learning
without the drawbacks of excessive data dependence.

To address the limitations of traditional and existing ML-
based force field (FF) development approaches, we devised a
workflow that combines a genetic algorithm (GA) with a
Gaussian process regression (GPR) surrogate model, which
emulates the outcomes of molecular simulations to signifi-
cantly reduce the computational cost of parameter refine-
ment.*" While GA and GPR-based surrogate models have been
previously employed for FF optimization, existing methods
often require large data sets” 3 ¥ 40T 6r humerous
iterations™"** to converge. Our novel active learning frame-
work efficiently balances the trade-off between data set size and
optimization iterations, achieving convergence within only 12
iterations and 300 data points. The GA-GPR active learning
framework offers a complementary approach to gradient-based
methods, with potential advantages in global optimization and
handling complex properties. We initiated the process with a
small set of 200 training data points, carefully selected for their
relevance to the target properties. 8—15 new parameters were
added during each iteration based on a predefined fitness
function, resulting in rapid and efficient parameter optimiza-
tion. The GA-GPR workflow emphasizes system-specific
parametrization for pure sulfone systems, accurately capturing
both structural and transport properties across temperatures.
Moreover, the final parameters, derived through this
automated framework and validated via extended MD
simulations, accurately reproduce atomic-level details and
dynamic behaviors while demonstrating excellent transfer-
ability across cyclic and acyclic sulfones. Despite training the
model at a single temperature, the derived parameters
maintained their accuracy across different temperatures,
demonstrating a transferability level that is rare and valuable
in force field development. These advancements establish a
robust and computationally efficient platform for FF develop-
ment, significantly outperforming traditional force fields like
OPLS in reproducing bulk and interfacial properties.

2. METHODS

In this study, we aimed to develop a reliable and accurate force
field for four sulfone molecules utilizing the OPLS functional
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Figure 2. Workflow for the optimization process using Genetic Algorithm (GA) and Gaussian Process Regression (GPR). The GA generates new
LJ parameters through mutation and crossover. A surrogate GPR model predicts the fitness of these parameters, and the top candidates are selected
for classical molecular dynamics simulations. The results are used to retrain the GPR model in an active learning loop (red arrows), iteratively
refining the force field parameters to optimize density and RDF predictions.

form. The molecular structures with atom labeling utilized are
shown in Figure 1. The force field describes the interactions
within and between molecules through a combination of
bonded and nonbonded terms. The total potential energy Uy,
for a system of N molecules can be expressed as

U= Q. ky(r =l + 2 ky(6 — 6,)

bonds angles
+ Z Z C,cos"(¢)
dihedrals n=0
12 6 49
o q.
Y 7
T 30 P51 A B i )
i<j ril rif 477:601"']'

where r and 0 represent bond lengths and angles, respectively,
with 7, and 6, being their equilibrium values. k, and k, are
force constants for bonds and angles. ¢ is the dihedral angle,
and C, are the Ryckaert-Bellemans coefficients. The
summation runs from n = 0 to S for each dihedral, allowing
for a flexible representation of dihedral interactions in
nonpolarizable force fields. ¢;; and o;; represent the Lennard—
Jones (LJ) potential parameters for nonbonded interactions
between atoms i and j. g; and g; are the partial charges on
atoms i and j, respectively, with r; being the distance between
them. In this framework, intramolecular bonded parameters,
including bond lengths, angles, and dihedral potentials, were
directly adopted from the standard OPLS force field.”*** For
the partial charges, we employed the DDEC646 method,
implemented in Chargemol v09 26 2017, to compute
accurate atomic charges for each molecule. First, isolated
sulfone molecules were optimized in their ground state using
density functional theory (DFT) at the M062X/ aug-cc-pVDZ
level of theory, as implemented in Gaussian 09.** The resulting
wave function information from these DFT calculations served

as the input for the DDEC6 method, which then calculated the
partial charges by partitioning the electron density to match
the electrostatic potential and chemical characteristics of the
molecules.

We aimed to estimate the optimal values using reference
data for the nonbonded interactions, particularly the LJ
parameters ¢ and €. The unlike interactions between atom
types were calculated using the Lorentz—Berthelot combining
rules. The optimization of the L] parameters was guided by
two primary reference quantities: the liquid phase density and
site-specific radial distribution functions (RDFs), particularly
the S—S and O—O RDFs. The liquid phase density was
primarily obtained from experimental data.””**~*° In cases
where experimental data were unavailable, we relied on values
derived from ab initio molecular dynamics (AIMD) simu-
lations. These AIMD simulations also provided the trajectories
necessary to compute the RDFs, offering a detailed depiction
of the molecular structure and interactions in the liquid phase.
A summary of the steps involved in the optimization process is
displayed in Figure 2.

2.1. Reference Database Generation. 2.1.1. Ab Initio
Molecular Dynamics Simulations. The reference values for
fitness calculation were obtained through AIMD simulations
conducted in the liquid state for each sulfone molecule. The
optimized ground-state geometries of each molecule were used
to construct initial configurations where 30 molecules were
packed into a cubic box with a 20 A side length using
Packmol.”” Before performing the AIMD run, the initial
configuration was equilibrated using classical molecular
dynamics in an NPT ensemble for 500 ps. The supercell was
then geometry optimized within the density functional theory
framework at the same level of theory as described below. The
gradients on the wave functions and the nuclear positions were
optimized with convergence criteria of 107 and 107° awu,
respectively. Using the Quickstep module, the quenched
geometry was used to set up Born—Oppenheimer MD
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simulations with the electronic structure code CP2K.” The
AIMD simulations used density functional theory within the
Gaussian and plane wave (GPW) framework, utilizing
Perdew—Burke—Ernzerhofs (PBE) functional’® to account
for exchange-correlation effects. Dispersive interaction correc-
tions were included using the empirical dispersion correction
(D3) from Grimme,” with a cutoff of 40 A. The wave
functions were calculated using double { valence polarization
(DZVP) basis sets with short-range terms for each atom type
with an energy cutoff of 500 Ry. The norm-conserving
Goedecker—Teter—Hutter (GTH) pseudopotentials®"®* were
applied to consider the effect of nuclei and core electrons.
Equations of motion were integrated with a time step of 1 fs.
The system was equilibrated for 56 ps in the isothermal—
isobaric (NPT) ensemble at 1 bar using an isotropic unit cell
according to the scheme of Martyna et al,”> with a time
constant of 500 fs. A production simulation followed
equilibration in the canonical NVT ensemble for 20 ps. We
set the temperature at 303 K, except for DMS, where a higher
temperature of 393 K was used due to its elevated melting
point, controlled by one chain of six Nose—Hoover thermo-
stats with a time constant of 100 fs.** Three-dimensional
periodic boundary conditions were employed in all simu-
lations. The trajectory after every 10 fs time step was stored for
postsimulation analysis. The RDFs for sulfur—sulfur (S—S) and
oxygen—oxygen (O—O) pairs were computed by analyzing the
trajectories. The final set of liquid phase densities and the S—S
and O—O RDFs served as reference data for the machine
learning model, providing a benchmark to optimize the force
field parameters efficiently.

2.1.2. Classical Molecular Dynamics Simulations. : To
develop the Gaussian process regression surrogate model, we
first generated a training data set through a series of classical
MD simulations. The initial force field was based on the OPLS
functional form, but we replaced the atomic site charges with
those computed using the DDEC6 method, resulting in a
parent parameter set. To explore the parameter space, we
employed a genetic algorithm that introduced mutations to
this parent vector by altering the parameters by +5%, thereby
generating 200 offspring parameter sets.

We then performed classical MD simulations on 3000
sulfone molecules using these 200 mutated parameter sets
using the GROMACS engine.”> These simulations were
conducted under the same thermodynamic conditions as
those used in the AIMD simulations to achieve equilibrated
configurations. The simulations were initialized from energeti-
cally minimized configurations and employed a time step of 1
fs. A cubic simulation box was used with periodic boundary
conditions applied in all directions. The simulations were
conducted in the NPT ensemble, utilizing a velocity-rescaling
thermostat®® to maintain temperature and a Berendsen
barostat®” to control pressure. Electrostatic interactions were
calculated using the particle mesh Ewald (PME) method for
real-space calculations and fast Fourier transform (FFT) for
reciprocal lattice points. The cutoff for Coulombic and van der
Waals interactions was 1.3 nm. These simulations were done
for 500 ps.

For each of the 200 parameter sets, the liquid phase density
and radial distribution functions for sulfur—sulfur (S—S) and
oxygen—oxygen (O—O) pairs were calculated once volume
equilibration was achieved. These computed densities and
RDFs constituted the training and testing data for the GPR
surrogate model, providing the necessary input to optimize the

force field parameters. This approach ensured a comprehensive
exploration of the parameter space, facilitating the develop-
ment of an accurate and efficient force field tailored for
sulfones.

2.2, Optimization Workflow. 2.2.1. Fitness Function for
LJ Parameter Optimization. The next step in developing
optimal force field parameters involves defining a metric to
evaluate how well the predicted force fields reproduce the
reference liquid phase properties, specifically the density and
radial distribution functions. These reference properties were
obtained from AIMD simulations or available experimental
measurements. The accuracy of the predicted force fields was
quantified using a fitness function that measures the deviation
between the predicted values and the reference data.

The overall fitness function, F, was designed to simulta-
neously minimize two key objectives: the error in density and
the deviation in RDFs. This is expressed as a weighted sum of
the fitness components for density (Fyengt,) and RDFs (Frpg).

F= WdensityElensity + WRDFFRDF (1)

Here, the weights .., and wppg account for the different
units and magnitudes of the two components. The fitness
component Fye,g, represents the absolute error between the
predicted and reference densities, and it is defined as follows.

E:{ensity = IDFF - DRef.l (2)

Where Dgp is the density obtained from classical MD
simulations using the predicted force field, and D, is the
density from experiment or AIMD. The RDF component of
the fitness function, Fgppp, is unitless and calculates the root-
mean-square error between the predicted and reference RDFs
for both intermolecular sulfur—sulfur (S—S) and oxygen—
oxygen (O—O) interactions.

2 2
B = Xss + Xo0
TN 2 3)

The terms y3s and y3o quantify the deviation between the
predicted and reference RDFs and are computed as follows.

)(2 _ Zr [g{fiMD(,‘) B g{i\:ﬁD(r)]z
aa Zr [g(iI'MD(r)]Z (4)

where ghMP(r) and gha(r) are the RDFs for atom pairs a—a
(S—=S or O—0), and r is the distance over which RDFs were
calculated, ranging from 0.0 to 9.0 A, with a spacing of 0.02 A.

Thus, the fitness function (eq 1) reduces the task of
determining the optimal force field parameters to an
optimization problem. The goal is to minimize this function
by adjusting the nonbonding parameters ¢ and €, ensuring that
both the structural (RDF) and thermodynamic (density)
properties of the sulfone molecules are accurately reproduced.

2.2.2. Surrogate Gaussian Process. The Gaussian process
regression model, implemented using the Scikit-learn
library,68 was employed to predict the fitness values
corresponding to different L] parameter sets. Initially trained
on a data set of 200 parameter sets, the GPR model was
integrated into the Genetic Algorithm framework to guide the
search for optimized parameter sets (see Figure 2). The GPR
model used a composite kernel function, which was defined as
follows:

https://doi.org/10.1021/acs.jctc.5c00061
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k(x, ') = C(1. 0, (1e3, 1%)) x RBF(1, (1e72, 1¢%))
(8)

In this expression, C(1.0, (1e™, 1¢*)) denotes the constant
kernel, which applies a scaling factor to account for the global
variance in the data. The constant kernel starts with an initial
variance of 1.0, with bounds between 0.001 and 1000, allowing
the model to estimate global variance flexibly.

The Radial Basis Function (RBF) kernel, with an initial
length scale / = 1, ensures smoothness in the predicted fitness
values. The length scale governs how quickly correlations
between data points decay, and its bounds (0.01—100) provide
the flexibility to capture both fine details and broader trends in
the data. The GPR model’s hyperparameters, such as the RBF
kernel’s length scale and the constant kernel’s variance, were
optimized through 10 restarts to ensure robust training. A
standard scaler was applied to the data to enhance numerical
stability during the optimization process.

It should be noted that the GPR model was initially trained
(iteration zero) using 200 reference data points, as described in
Section 2.1. Integrating the GPR model with the GA
represents an active learning process (denoted by red arrows
in Figure 2), where the GPR model is continuously improved
by incorporating new data into the reference data set at each
iteration. This active learning step, discussed in the next
section, enhances the model’s predictive accuracy as it
iteratively refines its understanding of the search space.

2.2.3. Genetic Algorithm and Active Learning. The genetic
algorithm was employed to systematically explore the LJ
parameter space by generating new candidate sets of
parameters. A custom GA was developed using the DEAP
library,” which integrated the surrogate GPR model to
estimate the fitness of newly generated parameters. The initial
population for the GA was generated by applying mutations on
the reference data set individuals, consisting of parameters for
200 MD simulations, as discussed in Section 2.1. These
mutations involved scaling each parameter within a random
range of 75—125% of its original value while being constrained
within predefined bounds to ensure physically meaningful
results. Following the mutation step, crossover operations were
carried out with a crossover probability of 0.4. In each
crossover, parameters (genes) from two-parent individuals
were swapped based on a randomly generated mask, producing
new offspring individuals. A set of S00 new candidate
parameters was generated through this mutation and crossover
process.

The initial parameter bounds for ¢ and & were set within
+5% deviations from OPLS nonbonded parameters to ensure
numerical stability and physically meaningful values in
preliminary simulations. This narrow range prevented the
optimizer from exploring highly unphysical regions before
sufficient training data was available. While initial deviations in
density and RDFs were noticeable, they followed expected
trends, allowing us to refine the parameter space systematically.
Based on the observed range of ¢ and € values in the initial
data set, we expanded the bounds to a broader range (0.1-2.5)
for subsequent iterations. Additionally, extreme parameter
values leading to simulation crashes were excluded from the
training set, enabling adaptive learning while ensuring the
physical plausibility of the optimized parameters. This iterative
refinement strategy balanced exploration with stability,
ensuring efficient and reliable optimization of force field
parameters.

The fitness of these newly generated individuals was then
predicted using the surrogate GPR model trained on predicting
fitness using the reference data. This allowed for rapid
assessment without the need for computationally expensive
simulations (see Figure 2). The individuals were ranked based
on the GPR-predicted fitness, and the top 8—15 candidates
were selected. These selected candidates were subjected to
classical MD simulations to compute their actual fitness,
following the same protocol as discussed in Section 2.1. These
MD simulation fitness values, along with the corresponding L]
parameter sets, were then added to the training data set. The
GPR model was retrained on this expanded data set,
incorporating the new simulation results to improve its
accuracy.

The active learning loop—where the GA generated new
candidates, the GPR model predicted their fitness, and the top
candidates were refined through MD simulations—was
repeated iteratively. Classical MD simulations were conducted
during each iteration for these 8—15 parameters with the
lowest predicted fitness values, following the same procedure
as discussed above. These new data points were added to the
data set, including their corresponding density and RDFs. This
iterative workflow ensured that with each cycle, the GPR
model gained a deeper understanding of the optimization
landscape, gradually honing in on the regions of the parameter
space most likely to yield optimal L] parameters.

2.2.4. Convergence and Freeze. By the end of 10—12
iterations, the model successfully predicted parameter sets with
low overall fitness, including appropriate individual fitness
scores for both density and RDF. Active learning significantly
reduced fitness values compared to the initial data set, leading
to faster convergence and more extensive exploration of
parameter space beyond the original 200 data points. At the
end of the active learning loop, we gathered nearly 300 data
points on average for each sulfone system. The parameter set
with the lowest fitness value from the final iteration was
selected as the optimal force field. After obtaining the final set
of parameters from the surrogate model, minor manual
adjustments were made to further optimize the liquid-phase
density and RDFs. This fine-tuning involved systematically
varying parameters within a very narrow range (typically within
+2%) to evaluate their impact. Adjustments were retained only
if they led to a simultaneous improvement in both density and
RDFs while preserving consistency with experimental and ab
initio reference data. The surrogate model’s parameters were
adopted without modification if no improvement was
observed. This step ensured that the optimized force field
achieved the best possible agreement with reference data while
maintaining physical plausibility and transferability. The
converged force field will be termed the GA-GPR model
throughout the text.

2.3. Production Simulation. In the production phase, the
GA-GPR optimized force field was utilized to perform classical
MD simulations on 5000 sulfone molecules using the
GROMACS engine.65 The simulation protocol mirrored the
earlier procedures as stated in Section 2.1, starting with an
initial energy minimization step to ensure a stable config-
uration. This was followed by equilibration in the NPT
ensemble for 5 ns, allowing the system to achieve the correct
temperature and pressure. After equilibration, the production
run was conducted in the NVT ensemble for an additional 5
ns. During this phase, the system’s trajectory was recorded at
every 1 fs to capture detailed molecular motion and dynamics.

https://doi.org/10.1021/acs.jctc.5c00061
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The remaining simulation parameters were the same as Section
2.1.

To validate the developed force fields, viscosity () was
determined by integrating the pressure autocorrelation
function, employing the Green—Kubo relation.”’~">

V o0
n= kB—T A <Rlﬂ(0)Rlﬂ(t)>dt (6)

Here, V is the simulation volume, P,4 represents the pressure
tensor components (both diagonal and off-diagonal). For
robust capture of the short-time behavior of the autocorrela-
tion function, the pressure tensor was recorded at every
simulation step (1 fs). The integral in eq 6 converged under 30
ps for all systems, except for MSL, which converged within 5§
ps, as shown in Figure S1 of the Supporting Information (SI).
Autocorrelation functions were computed for 50—75 ps
intervals, with starting points spaced by ~2 ps for GA-GPR
final parameters and ~5 ps for OPLS parameters. The final
reported viscosities represent an average of the cumulative
integral of the last 20 ps.

Surface tension was estimated from a two-phase simulation,
where sulfone molecules were in equilibrium with their vapor
(essentially a vacaum under the studied conditions). A pre-
equilibrated configuration of the bulk liquid containing 5000
molecules was used as the starting point. The simulation box
length along the z-axis was extended up to 28 nm to create two
liquid—vapor interfaces. The surface tension (y) was calculated
based on the pressure tensor differences between the
component normal to the interface (P,,) and the components
parallel to the interface (P, and Pyy), using the following
equation.

LZ
V= :(szz - Pxx - Pyy) (7)
Here, L, represents the length of the simulation box along the
z-axis, and P,, are the diagonal terms of the pressure tensor.
The NVT simulation was performed for 8 ns, with pressure
tensor values extracted every 100 fs. The surface tension was
then calculated by averaging the results over the trajectory.

3. RESULTS AND DISCUSSION

3.1. Liquid Density Comparison: AIMD vs Exper-
imental Results. We first compare the liquid densities
obtained from ab initio molecular dynamics simulations with
experimental measurements to validate the accuracy of the
AIMD method. The computed densities from AIMD (p*™P)
at 303 K and 1 bar show excellent agreement with the
experimental values (p®®), as summarized in Table 1. The
deviations (Ap) between the simulated and experimental
densities are minimal, ranging from 0.09 to 1.40%. This level of

Table 1. Comparison between AIMD Simulated (p*™P)
Liquid Density (in kg m™) against Experimental
Measurements (p®?), and Their Deviation (Ap)“

sulfones por pAMD Ap (%)
SL 1262.9,% 1262.0,°° 1262.3,°°* 1261.9,>  1280.6 1.40
1261.4,° 1260.4,°"°° 1260.8°°
MSL 1183.3,% 1184.1% 1184.4 0.09
DMS 1152.5** 1156.7 0.36

“All values are at 303 K and 1 bar, except for DMS, where measured
and simulated values are at 393 K.

agreement builds confidence in the reliability of AIMD as a
reference for training machine learning models, particularly in
optimizing LJ potential parameters. For instance, in the case of
SL, the AIMD density is 1280.6 kg m ™3, which deviates by only
1.40% from the experimental average of 1262.9 kg m™.
Similarly, the agreement for MSL and DMS is remarkable, with
deviations of 0.09 and 0.36%, respectively. These minor
deviations can be attributed to the inherent approximations in
AIMD simulations and experimental uncertainties. Nonethe-
less, the overall close match supports the reliability of the
AIMD results in predicting accurate liquid densities.

The close agreement between AIMD and experimental
densities gives us substantial confidence in the quality of other
computed properties, particularly the radial distribution
functions derived from AIMD trajectories. Since the AIMD
densities align closely with experimental data, it strongly
suggests that the structural details captured by the RDFs are
also accurate. These RDFs, in turn, provide a reliable
foundation for training machine learning models aimed at
optimizing LJ potential parameters. Thus, the high fidelity of
the AIMD density results serves as a key indicator that the
microscopic details reflected in the RDFs can be trusted to
refine force fields, ensuring that the final optimized models
faithfully replicate both macroscopic and molecular-level
behaviors.

3.2. GA-GPR Force Field Parameterization. To assess
the prediction accuracy of the GPR model before force field
parametrization, an initial test was conducted to validate its
performance in predicting the densities of the four sulfone
molecules. The data set of 200 MD simulations was split into
an 80:20 ratio for training and testing, respectively. The GPR
model was trained using 160 parameter sets and their
corresponding densities and then validated on the remaining
40 testing parameter sets. The results showed an R? value of
0.96 or higher for all four molecules. This indicates that the
GPR model can effectively predict density based on the
parameter sets (see Figure 3a). A similar process was repeated
to evaluate the prediction accuracy for the overall fitness,
which was defined as errors in radial distribution function and
density. Here, too, the GPR model achieved an R* value
exceeding 0.96, confirming its reliability in predicting both
density and fitness.

(a) SL 2| ()600 4 ==== s,

1400 DMS ---- DMS
w‘T X EMS 3 ---- EMS
= MSL g g 4001 ===="MSL
21350 & E
E & 2
< = 200

1300 > b
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Figure 3. (a) Performance of the GPR surrogate model in predicting
density: shows the correlation between actual simulated densities and
GPR-predicted densities for the four sulfone systems. A strong
agreement demonstrates the model’s high prediction accuracy, with
R? values exceeding 0.96 across all systems. (b) Evolution of the
fitness function during GA-GPR training: illustrates the progressive
improvement in the fitness function as new individuals are added
using active learning. The rapid increase in fitness observed after 200
individuals reflects the exploration phase, followed by less variation as
the algorithm fine-tunes the solution.
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The evolution of the fitness function throughout the
optimization process is illustrated in Figure 3b, which shows
the fitness values of the first 300 individuals generated by the
genetic algorithm for each of the four sulfone molecules.
During the initial generations, significant variation in fitness
values was observed among individuals, reflecting the broad
exploration of the parameter space by the genetic algorithm.
This variability was critical in ensuring the algorithm could
effectively navigate the complex landscape of LJ parameter
combinations.

The genetic algorithm leveraged the predictive power of the
GPR model to guide the search toward promising regions of
the parameter space, continually updating the fitness function
to favor the best-performing parameter sets. Over subsequent
iterations, the range of fitness values gradually narrowed, and
convergence toward optimized parameter sets began to
emerge. After approximately 12 iterations (except for SL,
which took only a single iteration), the model successfully
identified the optimal parameter set with the lowest fitness
value for density and RDF. This indicated that the genetic
algorithm, combined with the GPR model, could find LJ
parameters that effectively reproduced the target properties of
the sulfone molecules.

In the early stages of the optimization process, the model
often predicted unrealistic Lennard-Jones parameters, as seen
on verification with MD simulations. These deviations arose
primarily from the model’s exploration strategy, where it
ventured into less relevant areas of the parameter search space.
However, as the active learning framework iterated and
continuously refined the GPR model using feedback from
MD simulations, the model began to adapt and focus its
exploration on the more meaningful and physically valid
regions of the parameter space. This progressive refinement
significantly reduced the occurrence of unrealistic predictions
and guided the model toward generating L] parameters that
aligned well with expected physical properties.

The novelty of our active learning approach lies in its
remarkable efficiency in converging to optimized force field
parameters. In our approach, the active learning process
required only 12 iterations (except for SL, which took only a
single iteration), equivalent to approximately 300 individual
parameter sets, to achieve convergence. This is significantly
superior to earlier attempts reported in the literature, where a
much larger number of training parameters, typically at least
1000 and up to 600 iterations, were required.””*>**** The
efficiency of the combined GA-GPR workflow became evident
as the genetic algorithm consistently converged to parameter
sets with favorable fitness values in far fewer iterations. The
gradual reduction in fitness variability and convergence to an
optimal parameter set highlights the strength of this active
learning-based optimization strategy in accurately modeling the
target system properties with greater computational efficiency.
Unlike our gradient-free GA-GPR framework, ref 73 employs a
differentiation-based method, converging in 40—60 iterations.
In comparison, our approach achieves optimization in as few as
1—10 iterations without requiring gradient evaluations, offering
broader applicability to complex parameter landscapes.

The proposed GA-GPR framework is designed to efficiently
optimize nonbonded parameters, specifically ¢ and ¢, for each
atom type. This method systematically explores the parameter
space, ensuring robust performance even as the number of
parameters increases. The iterative optimization process
balances computational cost and accuracy by selectively

expanding the training set with the most promising parameters
in each iteration. This approach allows the model to explore a
broader fitness landscape, leading to faster convergence while
maintaining excellent agreement with target properties.

The tables below provide an overview of the optimized
atomic site charges and Lennard-Jones parameters for the
sulfone molecules investigated in this study. Specifically, Table
2 lists the DDEC computed atomic site charges for the four

Table 2. Atomic Site Charges for the Four Sulfone
Molecules, Obtained from DDEC Calculations”

atom names SL DMS EMS MSL
S1 1.187726 1.596340 1.555625 1.493091
01 —0.633322 —0.684529 —0.691636 —0.679080
02 —0.633059 —0.684529 —0.691633 —0.665534
CS1 —0.318247 —0.560950 —0.555699 —0.400675
CS2 —0.317703 —0.560950 —0.361935
HS1 0.140548 0.149103 0.146207 0.126726
HS2 0.149467 0.149103 0.146206 0.120162
HS3 0.149774 0.149103 0.154753 0.118429
HS4 0.140364 0.149103 0.121963
HSS 0.149103
HS6 0.149103
CAl 0.081547
HA1 0.056889
CB1 —0.314231 —0.349532
HB1 0.101949 0.103750
HB2 0.101949 0.116082
HB3 0.103603
CC1 —0.124087 —0.303628 —0.156752
CC2 —0.124899
HC1 0.099307 0.109445 0.088810
HC2 0.092293 0.120345 0.082456
HC3 0.092745 0.120348
HC4 0.099093

“Charges are listed according to the atom labeling scheme as shown
in Figure 1.

sulfone molecules, while Table 3 presents the optimized ¢ and
€ parameters for the same set of molecules. For further details,
individual data for each molecule are presented in Tables S1—
S4.

3.3. GA-GPR Force Field Predictions. The following
section discusses the predictions obtained using the GA-GPR
force field and compares these results with available
experimental data or AIMD simulations, as well as with
predictions from other force fields. Table 4 provides a detailed
comparison of simulated densities obtained from the OPLS
and GA-GPR parametrizations, along with their percentage
deviation from reference densities at 303 K (for SL, EMS, and
MSL) and 393 K (for DMS). The liquid density of the sulfone
molecules was calculated from molecular dynamics simulations
performed using an NPT ensemble over 5 ns. Before data
collection, an equilibration period was applied to ensure the
system reached a stable state. The density values were averaged
from the production phase of the simulation, which was
divided into four blocks of 1 ns each to evaluate the
uncertainty in the computed average.

The tabulated results (Table 4) show that the densities
calculated using the OPLS parameters show significant
deviations when compared to reference values, particularly
for the cyclic sulfones. For SL, the OPLS-derived density
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Table 3. Atom Names and Their Corresponding 6 and € Parameters for the Four Sulfone Molecules”

SL DMS EMS MSL
atom names o (nm) € (kJ/mol) o (nm) € (kJ/mol) o (nm) € (kJ/mol) o (nm) € (kJ/mol)
S 0.34443 1.13170 0.33885 1.15816 0.32019 1.04355 0.33140 1.71473
(@) 0.32411 0.41901 0.34916 0.52085 0.36028 0.58288 0.35990 0.35096
CS 0.35781 0.25916 0.35509 0.35276 0.178S55 0.40939 0.32714 0.23181
HS 0.23111 0.13015 0.18692 0.14873 0.21544 0.25787 0.16952 0.17702
CA 0.36170 0.21388
HA 0.23590 0.15386
CB 0.32883 0.23501 0.36159 0.20522
HB 0.20275 0.13916 0.23136 0.15570
CC 0.34880 0.25952 0.19429 0.20673 0.37414 0.25074
HC 0.23821 0.13955 0.19234 0.12642 0.23279 0.17560

“The values are listed as per the atom labeling scheme as shown in Figure 1.

Table 4. Comparison of Simulated Densities (kg/m®) Obtained Using OPLS (p°"*) and GA-GPR (p®*~"}) Parameters,
along with Their Percentage Deviations (Ap) from Reference Densities (p™") Taken from AIMD/Experimental Data at 303 K

for SL, EMS, and MSL, and at 393 K for DMS

sulfones pret pOrLs Ap (%) pOA-GPR Ap (%)
SL 1262.90% 1304.00 + 0.30 325 1259.45 + 0.01 —0.27
EMS 1168.81 1158.55 + 0.10 —0.88 1179.71 + 0.16 0.93
MSL 1183.30°% 1232.55 + 0.23 4.16 1187.33 + 0.19 0.34
DMS 1152.50 1119.55 + 0.22 —2.86 1155.85 + 0.19 0.30

Table 5. Comparison of Simulated Densities (9®*~%"®, kg/m?) Using the GA-GPR Force Field with Experimental Densities

(p®*, kg/m?) at Different Temperatures for Sulfone Molecules

323 K 373 K
Gilltnes pExp. pGA— GPR pExp. pGA—GPR
SL 1245.20," 1244.70°>%3 1239.05 + 0.08 1200.90** 1188.80 + 0.41
EMS 1148.08 + 0.13 1066.82 + 0.21
MSL 1167.20,>° 1166.90** 1164.67 + 0.19 1124.10** 1107.96 + 0.13
388 K 398 K
sulfones pExp. pGA—GPR pEpr pGA—GPR
DMS 1157.40%* 1161.62 + 0.33 1147.70** 1150.34 + 0.26

overestimated the reference by approximately 3.25%, while for
MSL, an even more considerable overestimation of 4.16% was
observed. In contrast, for the chain sulfones EMS and DMS,
the densities were underestimated by 0.88 and 2.86%,
respectively. This discrepancy can be attributed to the
limitations of the OPLS force field in accurately capturing
intermolecular interactions for different types of sulfones,
suggesting that the intermolecular forces in cyclic sulfones are
overestimated, leading to an overly dense structure. The GA-
GPR force field, however, produced significantly improved
results, with the computed densities for all the sulfone
molecules showing deviations of less than 1% from the
reference values. These slight deviations demonstrate the
accuracy of the GA-GPR force field, particularly in capturing
the intermolecular interactions necessary for reproducing the
experimental or AIMD densities.

Continuing from the previous discussion on the accuracy of
the GA-GPR force field in predicting liquid densities, we now
focus on evaluating its performance across different temper-
atures and comparing these results with experimental measure-
ments. As presented in Table S, the GA-GPR force field
parameters exhibit high accuracy in predicting the density of
sulfones over a range of temperatures. For SL, the predicted
densities at 323 and 373 K closely match the experimental
values with deviations within 0.5%. This level of agreement

indicates that the GA-GPR parameters effectively capture the
temperature-dependent behavior of SL, reflecting accurate
intermolecular interactions. The GA-GPR force field for MSL
demonstrates strong predictive accuracy, with deviations
consistently within 1%. This agreement further supports the
transferability of the GA-GPR parameters across different
temperatures, as they maintain high accuracy in representing
bulk properties. Similarly, for DMS, the GA-GPR force field
accurately predicts the density at 388 and 398 K, with
deviations from experimental values within a narrow range.

Overall, the GA-GPR force field consistently provides
accurate density predictions for sulfones across various
temperatures (see Figure S2), with minimal deviations from
experimental data. This demonstrates not only the reliability of
the force field in predicting temperature-dependent properties
but also its robust transferability. The previously reported SL
density at room temperature showed a deviation of 2.71'* and
2.33%.”° At high temperatures, the maximum deviation
reported using GA-GPR force field is below 1%, which is
lower than the maximum deviation reported in ref 26 as 1.90%.
The improved representation of intermolecular interactions
achieved with GA-GPR parameters underscores their superi-
ority over traditional force fields in simulating the liquid
densities of sulfones.
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3.3.1. Radial Distribution Functions. Figure 4 illustrates the
radial distribution functions between sulfur—sulfur (S—S) and

2.0 .
) p ‘
(a) ‘ 0‘\\ 195 . f@
15 ) 5\ P ole
5’ ‘R 1.00 Iy \}'gm.f"‘—‘
= i R = gt et il
= y \ 24 =075 i
7 P e | A
S 4 N $0.50 4
0.5 I //
i 0.25 /"’
4
0.0 D—E-@-:—J 0,00 hoo
)
2.01(b) /iy 4
A AN
I vl
. TR S
= FA = V. o d
= ] # © !/
4 1.0 ‘, - {’_’4 T 'P’,
= ¥ B Sos{f
0.5 il 'z
1
13 1
0.0 fm-m-mid 0.040®
2.0{(¢) 2 \ A
I FRY
’J-'I \‘\v ,77 ‘!
1.5 ] L\ 1.0 oy Qoo ]
3 [ ‘& 3 g","
@ _\\ o i
1.0 : - T 40
& 1 éw S 3 ¢
o icg 05 i
0.5 i /Ii
/! N
0.0 f-u-=-m-/ 0.0 po &
(d) /w.‘ 1.25 ',.\‘
A -,
L5 Iy 1.00 PAAET L
|1 E\ \ zb le -
1\1[] 1',' Q\‘ ] =075 ! Eas
7t TR i B i
o : ol o (i
& i £0.50 3
0.5 i’ = AIMD 1, ® AIMD
il ~—- OPLS 0.25 l,,’ Lo= OPLS
5 —— GA-GPR o —-— GA-GPR
0.0 f-m--u- 0.00
2 4 6 8 10 2 4 6 8 10
rss [A] ro-o [A]

Figure 4. Radial distribution function for S—S and O—O atom pairs:
(a) SL, (b) DMS, (c) EMS, and (d) MSL. Curves compare the
atomic distributions obtained from AIMD (filled circles), OPLS
(cyan), and the GA-GPR model (purple). The close agreement
between the GA-GPR and AIMD curves demonstrates the model’s
accuracy in capturing the structural characteristics, while deviations in
the OPLS curve highlight the differences in general force field-based
predictions.

oxygen—oxygen (O—O) pairs in the sulfone molecules. These
RDFs provide insight into the local structure and packing
behavior of the molecules, and we compare the RDFs obtained
using the GA-GPR force field with those from AIMD
simulations and the OPLS force field to evaluate the accuracy
of our approach. In this study, AIMD simulations were
performed for 30 sulfone molecules over 20 ps under NVT
conditions to generate reliable RDFs for structural validation of
the optimized force field. While a 20 ps trajectory was chosen
for better statistical accuracy, RDFs can often be obtained from
shorter AIMD runs, particularly when focusing solely on
structural properties rather than dynamical or transport
properties, which require longer simulation times. Due to
larger system sizes and molar ratio constraints, AIMD may be
more computationally demanding for complex -electrolyte
systems. However, with carefully designed smaller-scale models
or shorter runs, AIMD remains a practical and effective tool for
deriving structural insights.

A close inspection of these RDFs reveals that the GA-GPR-
derived RDFs are in excellent agreement with the AIMD
results, indicating that the GA-GPR parameters successfully
capture the local structure around sulfur and oxygen atoms.
For the S—S RDF (left panels of Figure 4), the GA-GPR force
field closely reproduces both the peak positions and intensities
as observed in the AIMD simulations, indicating a well-defined
representation of the coordination environment in the liquid
phase. The first peak, representing the nearest neighbor S—S
interactions, aligns precisely with the AIMD data, reflecting the
accuracy of GA-GPR in predicting interatomic distances. In
contrast, the OPLS force field shows noticeable deviations
from the AIMD results. Specifically, the OPLS-derived S—S
RDF displays a shift in the peak position (prominent in MSL,
Figure 4d) or incorrect estimate of peak heights (evident from
Figure 4a,c), indicating an unrealistic depiction of the local
molecular environment. This suggests that OPLS parameters
do not adequately represent the intermolecular interactions for
sulfones, particularly in capturing the subtle features of S—S
correlations.

Similarly, the GA-GPR model again demonstrates excellent
predictive capability for the O—O RDFs, as shown in the right
panels of Figure 4. The RDF obtained from GA-GPR matches
the AIMD RDF in the location and magnitude of the primary
and secondary peaks, indicating an accurate description of the
short- and medium-range order. However, the OPLS force
field fails to reproduce the AIMD reference accurately, with
discrepancies observed in the peak positions and their relative
intensities. Specifically, the OPLS-derived RDFs entirely miss
the first shoulder peak present in O—O RDFs in all sulfone
systems, as seen from the AIMD trajectory, with the maximum
deviation seen in the case of MSL (Figure 4d).

Overall, the GA-GPR force field exhibits remarkable
agreement with the AIMD results for both S—S and O—-0O
RDFs, outperforming the OPLS force field in representing the
local structural features of sulfone molecules. These observa-
tions highlight the effectiveness of the GA-GPR parametriza-
tion in capturing intermolecular interactions and suggest that
the GA-GPR model offers a more reliable depiction of the
molecular packing and coordination environment in the liquid
phase.

3.3.2. Dipole Moment. The dipole moment is essential as it
provides insight into the charge distribution within molecules,
both in the isolated state and in the bulk liquid environment.
Table 6 provides a summary of the dipole moments obtained
from QM calculations (¢®), OPLS simulations (u°F*%), and
GA-GPR simulations (u®*~6™®). The QM calculations were
performed for isolated molecules using the M062X functional
with the augmented correlation-consistent pVDZ basis set to
account for the diffusion functions of the orbitals involved

Table 6. Comparison between Dipole Moment (Debye)
Obtained from Quantum Mechanical Calculations (u®) of
Isolated Molecules with Classical Molecular Dynamics
Simulations Employing OPLS (4°™®) and GA-GPR
(uSA~CPR) Potentials

T — M 4O GA—GPR
SL 5.68 7.44 6.17
EMS 4.81 4.75 4.74
MSL 5.72 7.71 5.05
DMS 4.97 4.55 4.57
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Figure S. Distributions of dipole moments from MD simulated trajectories using GA-GPR and OPLS force fields: (a) SL, (b) DMS, (c) EMS, and
(d) MSL. The solid vertical line indicates the dipole moment of the isolated molecule obtained from quantum mechanical calculations at the

MO062X/aug-cc-pVDZ level of theory, serving as a reference.

adequately. The dipole moments were extracted from a S ns
NVT trajectory containing 5000 sulfone molecules for the MD
simulations. The distribution of dipole moments over the
molecular population is illustrated in Figure S.

The results indicate that the GA-GPR force field better
represents the dipole moment compared to OPLS, as evident
from both the mean values and the overall distributions. For
SL, the QM dipole moment is reported as 5.68 Dy, while the
OPLS force field significantly overestimates it to 7.44 Dy. In
contrast, the GA-GPR model predicts a value of 6.17 Dy, much
closer to the QM reference, indicating improved accuracy in
capturing the charge distribution in bulk. The dipole moment
of SL reported in previous force field-based simulations were
6.178 Dy'* and 5.922 Dy.* Similarly, for MSL, the OPLS
force field produces a dipole moment of 7.71 Dy, which
deviates considerably from the QM reference value of 5.72 Dy.
On the other hand, the GA-GPR prediction of 5.05 Dy shows
significantly improved agreement, highlighting the efficacy of
the refined force field in accurately modeling dipole moments
for such systems. In the case of EMS and DMS, the GA-GPR
and OPLS force fields both show reasonable accuracy
compared to the QM values, with GA-GPR performing slightly
better overall. For EMS, the QM dipole moment is 4.81 Dy,
and GA-GPR and OPLS predict similar values of 4.74 Dy and
4.75 Dy, respectively. For DMS, the QM dipole is 4.97 Dy,
with GA-GPR predicting 4.57 Dy and OPLS predicting 4.55
Dy. It is important to note that within the GA-GPR framework,
the atomic site charges were recalculated using the DDEC/c3
partitioning scheme to accurately capture the electronic
distribution in sulfone molecules. The dipole moment was
computed as the average molecular dipole across frames from
the NVT trajectory, allowing us to assess the qualitative impact
of charge modifications. While bonded parameters from the
OPLS force field were retained, the recalibrated charges
significantly improved the representation of intermolecular
interactions, as reflected in the discrepancies between OPLS
and GA-GPR force fields.

The dipole moment distributions in Figure S further support
these observations. The GA-GPR-derived distributions show a
clear peak that closely aligns with the QM reference, while the
OPLS distributions are often broader and shifted away from
the QM peaks, especially for SL and MSL. This suggests that
GA-GPR provides a more realistic depiction of the electrostatic
environment within the bulk, resulting in better agreement
with the isolated molecular dipole moments. It is evident that
the differences in dipole moment predictions between GA-
GPR and OPLS align well with the trends observed for density
predictions. Both force fields yield similar dipole moment
values for linear sulfones such as DMS and EMS, reflecting
their comparable performance in predicting liquid densities for
these systems. However, in the case of cyclic sulfones like SL
and MSL, significant discrepancies are observed between the
dipole moments predicted by GA-GPR and OPLS, consistent
with the differences in their density predictions. These findings
highlight the GA-GPR force field’s superior ability to
accurately capture the electrostatic environment and bulk
behavior, particularly for cyclic sulfones, where intermolecular
interactions are more complex and require a refined para-
metrization for reliable modeling.

The dielectric constant (&) is a critical property that reflects
the collective polarization response of a material under an
electric field and directly indicates the accuracy of molecular
force fields in reproducing electrostatic interactions. To
validate the GA-GPR potentials developed in this study, we
computed the dielectric constants for sulfone molecules using
MD simulations and compared the results with experimental
measurements and the OPLS force field. These calculations
were conducted using the gmx_dielectric module as
implemented in GROMACS. As seen from Table 7, The GA-
GPR potentials demonstrated a marked improvement over
OPLS in reproducing experimental dielectric constants. For
instance, in the case of SL, the GA-GPR dielectric constant
(34.0) is significantly closer to the experimental range (43.26—
43.33) than OPLS (29.8). Similarly, for MSL, GA-GPR (33.2)
aligns better with experimental values (29.08—29.2) compared
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Table 7. Comparison between Dielectric Constant (&)
Obtained from Experiments (¢°?) with Classical MD
Simulations Employing OPLS (¢°'*) and GA-GPR
(e%A~CPR) Potentials

sulfones 5P FOAE gerant
SL 4326, 43.33,”* 43.3% 29.8 34.0
EMS 33.0 32.0
MSL 29.2,% 29.08* 354 332
DMS 45787 32.7 31.8

to OPLS (35.4). A previous study on GROMOS force field
parametrization for DMS reported a dielectric constant of
approximately 27”* In contrast, the GA-GPR force field yielded
a higher dielectric constant of 31.8, closer to the experimentally
reported value of 45.78. These results highlight the capability
of the GA-GPR framework to capture the subtle balance of
short- and long-range electrostatic interactions, which are often
inadequately described by traditional force fields. The
systematic larger deviation of dielectric constants by OPLS,
as observed for SL, MSL, and DMS, suggests limitations in its
parametrization for accurately describing polarizable systems
like sulfones. In contrast, the GA-GPR approach effectively
incorporates polarization effects through ML-based parameter
optimization, leading to superior agreement with experimental
data.

3.3.3. Viscosity. Viscosity is a crucial transport property that
reflects the ease molecules move past each other in a liquid. It
is essential in the context of sulfone molecules used as additives
in electrolytes, as their viscosity affects the ion transport
efficiency and, consequently, the overall performance of battery
systems. The viscosity values in this study were computed from
classical MD simulations using the Green—Kubo formalism. As
discussed earlier, the viscosity was estimated from the time
integral of the pressure tensor autocorrelation function (see eq
6).

Table 8 compares the viscosity values obtained using OPLS
(7°"%) and GA-GPR (n“~%"R) force fields against the
experimental viscosities (7®F) for different temperatures.
The high-temperature viscosity obtained using OPLS param-
eters is tabulated in Table SS. The results highlight significant
differences between the two force fields, particularly their
ability to predict viscosity across various sulfones and
temperatures accurately. The GA-GPR force field closely
matches the experimental viscosities across the entire temper-
ature range for SL. At 303 K, the GA-GPR predicted viscosity

of 10.29 cP is in excellent agreement with the experimental
values, which range from 10.05 to 10.40 cP. In contrast, the
OPLS force field significantly overpredicts the viscosity at this
temperature, with a value of 20.47 cP, almost twice the
experimental value. GA-GPR continues to perform well at
higher temperatures and aligns well with the experimental
reference. The previously reported viscosity at 303, 323, and
373 K had a maximum deviation of 10.02% at room
temperature and 20.23% at high temperature.*®

No experimental reference is available for EMS, but a
comparison between OPLS and GA-GPR reveals that GA-GPR
consistently predicts significantly lower viscosities. At 303 K,
GA-GPR predicts a viscosity of 2.08 cP, while OPLS
overestimates it with a value of 5.80 cP. This trend continues
at 323 and 373 K, demonstrating GA-GPR parameters’ ability
to represent molecular transport in the bulk phase accurately.
The GA-GPR force field also shows excellent agreement with
experimental values for MSL. At 303 K, the predicted viscosity
is 10.09 cP, which matches well with the experimental data
ranging from 10.09 to 10.14 cP. However, OPLS significantly
overpredicts the viscosity at this temperature, with a value of
21.12 cP, similar to the case of SL. At higher temperatures,
GA-GPR predicted viscosities agree with the experimental
reference, whereas OPLS parameters continue to overestimate.
For DMS, GA-GPR predictions are once again closer to the
experimental measurements than OPLS. At 388 K, the GA-
GPR predicted viscosity is 1.25 cP, which closely matches the
experimental value of 1.285 cP. Similarly, at 393 and 398 K, the
GA-GPR value aligns well with the experimental value, whereas
OPLS underpredicts it throughout the temperature range.

Overall, the GA-GPR force field outperforms the OPLS
force field in accurately predicting the viscosities of sulfone
molecules at different temperatures (see Figure S2). The GA-
GPR model provides viscosity estimates that are in excellent
agreement with experimental data, with deviations consistently
within acceptable limits. In contrast, OPLS consistently
overpredicts the viscosity values, particularly for cyclic sulfones
such as SL and MSL. This overestimation can be attributed to
the overestimated electrostatic interactions and incorrect
representation of Lennard-Jones parameters in the OPLS
force field. In comparison, the GA-GPR model uses more
accurate DDEC atomic charges and optimized L] parameters,
resulting in a better representation of intermolecular
interactions and the dynamic behavior of the system.

3.3.4. Velocity Autocorrelation Function. To further
understand the transport properties of sulfone molecules, we

Table 8. Comparison of Viscosity (cP) Obtained from Classical Molecular Dynamics Simulations Employing OPLS (7

OPLS)

and GA-GPR (7%4~%PR) Force Fields, with Experimental (#®) Viscosities at Different Temperatures

303 K 323 K 373 K
sulfon es rIExp, ”OPLS nGA—GPR ’,IExp I’IGA_GPR nEx‘p, },IGA—GPR
SL 10.284,%> 10.29°>
10.228,°* 10.05°’
10.3,%° 10.074°¢ 20.47 + 0.04°° 10.29 + 0.01 63122 6.35 + 0.04 2.57% 2.77 + 0.03
10.401%
EMS 5.80 + 0.55 2.08 + 0.002 1.56 + 0.002 0.72 + 0.001
MSL 10.09%* 21.12 + 0.27 10.09 + 0.03 5.882,% 5.87 + 0.03 2289 2.35 + 0.02
10.14> 5.88%
388 K 393 K 398 K
sulfones ’,IExp, ’,IGA—GPR ”Exp ’,IOPLS nGA—GPR ’YEXP ”GA—GI’R
DMS 1.285% 125 + 0.002 1.208% 1.1 + 0.001 1.23 + 0.002 1.14 1.10 + 0.00
K https://doi.org/10.1021/acs.jctc.5c00061
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examine the velocity autocorrelation function (VACF)
obtained from the GA-GPR simulated MD trajectories. The
VACEF provides insight into how a molecule’s velocity changes
over time, thereby shedding light on the dynamics of sulfone
molecules in the liquid phase. Figure 6 illustrates the VACF for
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Figure 6. Normalized center of mass velocity autocorrelation
functions in sulfolane molecules obtained from simulations employing
the optimized force field (GA-GPR) parameters.

different sulfones. As time progresses, the decay in the VACF
indicates the loss of correlation due to molecular collisions that
alter the velocity. Negative correlations in the VACF, as shown
in Figure 6, indicate a reversal in velocity direction following
collisions. The well depth of the first minimum in the VACEF is
particularly significant, as it quantifies the extent of the caging
effect experienced by the molecules. In dense liquids,
neighboring molecules create a cage-like environment that
effectively traps a given molecule, reducing its mobility. This
caging effect leads to decreased diffusivity and increased
viscosity.

The trends in the VACF are consistent with the viscosity
results discussed previously. SL exhibits the deepest well in the
VACE, reflecting the most substantial caging effect among the
studied sulfones, corresponding to the highest observed
viscosity. MSL also shows a prominent caging effect, although
to a lesser extent than SL, aligning with its relatively lower
viscosity. For EMS and DMS, the shallower wells in the VACF
reflect weaker caging effects, which translate into lower
viscosities. The observed order of the caging effect, SL >
MSL > EMS > DMS, matches the viscosity order, SL > MSL >
EMS > DMS, indicating that the extent of molecular trapping
directly impacts the dynamics and viscosity of the system.

3.3.5. Self-Diffusion Coefficient. Table 9 presents the self-
diffusion coefficients for the four sulfone molecules, calculated
from the diffusive regime observed in the mean square

Table 9. Comparison of Self-Diffusion Coefficients (in Units
of 107'° m?/s) for Sulfone Molecules, Calculated from the
Diffusive Regime Observed in the MSD vs Time Plots
Obtained from NVT Trajectories Using OPLS and GA-GPR
Force Fields

sulfones OPLS GA-GPR
SL 0.13 + 0.002 0.41 + 0.02
EMS 2.03 + 0.0 5.56 + 0.16
MSL 0.06 + 0.003 1.41 + 0.02
DMS 15.15 + 0.32 12.75 + 0.20

displacement (MSD) versus the time plot extracted from NVT
trajectories. The diffusion coefficients were determined by
analyzing the linear portion of the log—log MSD vs time plot,
representing the diffusive regime (see Figure S3). The values
reported were averaged from five independent trajectories of
1000 ps each, ensuring the reliability of the computed diffusion
coeflicients. The extent of diffusion is influenced by the caging
effect, which was examined using the velocity autocorrelation
function. Molecules that are trapped more by their neighbors
are expected to show a reduced diffusion coeflicient due to
restricted mobility.

Upon comparing the diffusion coeflicients obtained from
GA-GPR and OPLS simulations, it is evident that the GA-GPR
model consistently predicts higher diffusion coefficients than
OPLS, except for DMS. For SL, the diffusion coefficient
obtained using OPLS is 0.13 X 107! m?/s, whereas GA-GPR
predicts a significantly higher value of 0.41 X 107'° m*/s. This
notable difference suggests that the OPLS force field
overestimates the strength of intermolecular interactions,
resulting in excessive caging and restricted mobility. In
contrast, the GA-GPR force field more accurately represents
the intermolecular forces, allowing for a more realistic
depiction of molecular mobility in the bulk. A similar trend
is observed for EMS and MSL—the diffusion coefficient
obtained from OPLS is significantly lower than the GA-GPR
computed values. On the contrary, for DMS, the trend deviates
slightly, with the GA-GPR model predicting a diffusion
coefficient of 12.75 X 107'° m?/s, which is lower than the
OPLS value of 15.15 X 107*° m?/s. This difference may arise
from differences in how the two force fields represent the
interactions specific to the linear structure of DMS. It is
important to note that, in the case of DMS, the viscosity
predicted by the OPLS force field was smaller compared to
GA-GPR, aligning well with the trend seen in the diffusion
coeflicient.

The observed order of diffusion coefficients, SL < MSL <
EMS < DMS, aligns well with the order of the caging effect, SL
> MSL > EMS > DMS, as determined from VACF
calculations. This consistency demonstrates that the GA-GPR
model not only provides more accurate diffusion coefficients
compared to OPLS but also effectively captures the underlying
dynamics that govern molecular mobility. The OPLS force
field, by overestimating intermolecular interactions, leads to
reduced diffusion coefficients, particularly for cyclic sulfones.
The GA-GPR model’s ability to accurately represent diffusion
properties highlights its suitability for modeling the transport
behavior of sulfone-based electrolyte systems, reinforcing its
transferability and reliability across different sulfone structures.

3.3.6. Surface Tension. Surface tension is a crucial property
in understanding the interfacial behavior of sulfone molecules,
particularly in the context of their use in electrolyte systems,
where interactions at the liquid—vapor or liquid—solid
interface can significantly influence performance. As discussed
earlier, surface tension was computed using classical MD
simulations with an 8 ns NVT run. The calculation was based
on the difference between the pressure tensor components
parallel and perpendicular to the interface, providing insight
into the cohesive forces at the molecular level. The running
average surface tension profiles in the sulfones are plotted in
Figures S4 and SS. These profiles clearly show that the
computed surface tension is well converged within the 1 ns.

Table 10 presents the surface tension values obtained using
the OPLS and GA-GPR force fields alongside the experimental
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Table 10. Surface Tension (mN/m) Calculated Using
Classical Molecular Dynamics Run with OPLS (y°°%) and
GA-GPR (y%4~SPR) Force Fields”

sulfones yExp. },OPLS },GA-GPR
SL 47.95%" 5525 45.60
EMS 39.83 25.51
MSL 45.27 35.64
DMS 30.54 3431

“Experimental value (y*%) for SL is provided for validation, and GA-
GPR predictions for other sulfones are considered reliable based on
this validation.

reference for SL. For SL, the GA-GPR predicted surface
tension is 45.60 mN/m, which is in close agreement with the
experimental value of 47.95 mN/m. This excellent agreement
validates the accuracy of the GA-GPR model in predicting
surface tension. In contrast, the OPLS force field overestimates
the surface tension, yielding a value of 55.25 mN/m, which
indicates stronger intermolecular cohesion than experimentally
observed. Previously reported surface tension using classical
MD simulation was 53.43'* and 34.62 mN/m.26 No
experimental reference values are available for the other
sulfones, EMS, MSL, and DMS. However, based on the strong
validation of GA-GPR for SL, it is reasonable to infer that the
GA-GPR predictions for these molecules are reliable. The GA-
GPR model consistently predicts lower surface tension values
than OPLS. The consistent overestimation by OPLS across all
sulfones can be attributed to the overestimation of the
intermolecular forces, leading to artificially high surface tension
values. In contrast, the GA-GPR force field, with its more
refined parametrization, provides a better match with

experimental data and a more realistic depiction of the
interfacial behavior of sulfone molecules.

To further understand the interfacial properties of these
sulfone-based systems, we investigated the liquid—vapor
interface structure by analyzing the density profiles of different
atom types. As shown in Figure 7, these density profiles
provide insight into the atomic arrangement at the interface
and bulk regions. As expected, the density profiles are flat in
the bulk liquid regions, indicating that the two-phase
morphology is well-equilibrated. The placement of heter-
oatoms, including sulfur (S), oxygen (O), and carbon (C), was
further analyzed to gain more insights into the interface
structure. The observed density profiles reveal a distinct
arrangement of atoms in sulfone molecules at the liquid—vapor
interface, which can be attributed to differences in polarity and
molecular interactions. Carbon atoms, being less electro-
negative than sulfur and oxygen, prefer to occupy the interface,
as their lower polarity makes them more surface-active. In
contrast, sulfur atoms are more electronegative and polarizable,
making them interact more strongly with neighboring
molecules in the bulk, resulting in their greater presence
away from the interface. Oxygen atoms, with a higher
electronegativity than carbon but smaller size and polarizability
compared to sulfur, occupy an intermediate position between
the interface and the bulk, balancing their interactions. In the
case of DMS, the symmetric molecular structure leads to an
equal placement of carbon and oxygen atoms at the interface,
while sulfur atoms remain in the bulk. This arrangement is due
to the similar polarity of carbon and oxygen, which results in
both atoms being surface-active. At the same time, sulfur
prefers the bulk to maximize its interactions with neighboring
molecules. The overall distribution of atoms reflects the
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Figure 7. Density profiles of atom types in sulfolane molecules obtained from simulations employing the optimized force field (GA-GPR)
parameters: (a) SL, (b) DMS, (c) EMS, and (d) MSL. Similar profiles obtained from simulations employing the OPLS force field are provided in

Figure Sé.
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interplay between molecular polarity, electronegativity, and the
need to minimize the system’s energy.

3.3.7. Comparison of GA-GPR with Bayesian Optimiza-
tion. To further establish the novelty and robustness of the
GA-GPR framework, we performed a direct comparison with
Bayesian Optimization (BO), a widely used method for force
field optimization.” Both methods were applied to the ethyl
methyl sulfone (EMS) system, starting from the same initial
parameters derived from the OPLS force field. The fitness
function was defined as the cumulative error in reproducing
density and radial distribution functions. For Bayesian
Optimization, the q-Expected Improvement (q-EI) acquisition
function was employed to select multiple sampling points per
iteration. Significant hyperparameter tuning was performed for
BO to ensure a fair comparison. As shown in Figure S7a, the
GA-GPR framework demonstrated significantly faster con-
vergence compared to Bayesian Optimization. Specifically, out
of the first 70 L] parameter sets generated, 38 from GA-GPR
achieved a fitness below 200, whereas only 8 from Bayesian
Optimization met the same criterion. This result highlights the
stability and efficiency of GA-GPR in balancing exploration
and exploitation of the parameter space.

Despite extensive tuning, Bayesian Optimization often
explored regions of high uncertainty, frequently generating
unphysical L] parameter sets that resulted in failed MD
simulations or unreasonably high fitness values. Strict bounds
(£25% deviation from the initial OPLS parameters) were
imposed on the LJ parameters to mitigate this. However,
despite these constraints, BO prioritized exploration near
boundary values, leading to parameter sets with unacceptable
fitness values. In contrast, GA-GPR exhibited a more
consistent progression toward optimal parameter sets,
effectively avoiding unphysical regions while maintaining
efficient parameter space exploration.

To further validate the robustness of GA-GPR, we compared
the RDFs obtained from the best L] parameter sets identified
by both methods (Figures 4c and S7b,c). While both methods
achieved low RDF errors, Bayesian Optimization produced
unwanted peaks in the RDF plots (Figure S7b,c), indicative of
unphysical parametrization. These artifacts were absent in the
RDFs generated by GA-GPR, underscoring its ability to
produce physically meaningful force field parameters. The GA-
GPR framework also requires minimal manual tuning of
hyperparameters compared to Bayesian Optimization, which
necessitated significant effort to optimize the acquisition
function and impose bounds to prevent unphysical sampling.
These results collectively demonstrate the novelty of GA-GPR
in achieving faster convergence, greater stability, and physically
meaningful parameter sets compared to state-of-the-art
methods.

4. CONCLUSIONS

This work presented an efficient and accurate approach to
developing optimized force field parameters for sulfone
molecules using a combined genetic algorithm and Gaussian
process regression (GA-GPR) model. Our active learning-
based optimization strategy significantly outperformed pre-
vious methods regarding convergence speed and required
parameter sets, achieving optimized parameters within 12
iterations (except for SL, which took only a single iteration)
and using only 300 data points. This efficiency demonstrates
the strength of the GA-GPR workflow in capturing the
essential intermolecular interactions of complex systems with

minimal computational cost. In addition, our method can
handle properties challenging for automatic differentiation-
based approaches, such as phase equilibration or long-time
dynamics. While density and evaporation enthalpy are not
examples of such properties, our framework is designed to be
extensible to more complex scenarios.

The GA-GPR-derived force field was thoroughly validated
against various experimental and reference data, including
density, dipole moment, viscosity, diffusion coeflicients, and
surface tension. The GA-GPR force field exhibited superior
accuracy in all cases over the OPLS force field, particularly in
describing bulk and interfacial properties. The predicted
viscosity showed excellent agreement with experimental
measurements, with the GA-GPR force field effectively
capturing the trends in molecular mobility and caging effects.
The surface tension results further demonstrated the trans-
ferability of the GA-GPR parameters, while the accurate
representation of density profiles highlighted its ability to
describe the structural arrangement of atoms at the interface
and in bulk.

Our approach provides a reliable and transferable force field
for sulfone molecules, with broad applicability to studies of
electrolytes and other complex systems. The combination of
genetic algorithms and machine learning offers a robust
framework for force field optimization, reducing manual
intervention and providing accurate predictions for both bulk
and interfacial properties. This study establishes a foundation
for further exploration of machine learning-driven force field
development, which can be extended to other classes of
molecules to enhance the accuracy and efficiency of molecular
simulations.
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