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ABSTRACT

This study presents a machine learning (ML)-augmented framework for accurately predicting excited-state properties critical to thermally
activated delayed fluorescence (TADF) emitters. By integrating the computational efficiency of semi-empirical PPP+CIS theory with a A-ML
approach, the model overcomes the inherent limitations of PPP+CIS in predicting key properties, including singlet (S,) and triplet (T,)
energies, singlet-triplet gaps (AEsr), and oscillator strength (f). The model demonstrated exceptional accuracy across datasets of varying
sizes and diverse molecular features, notably excelling in predicting oscillator strength and AEst values, including negative regions relevant
to TADF molecules with inverted S;-T gaps. This work highlights the synergy between physics-inspired models and machine learning in
accelerating the design of efficient TADF emitters, providing a foundation for future studies on complex systems and advanced functional
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. INTRODUCTION

Advances in computational chemistry have revolutionized the
numerical determination of molecular properties, offering unprece-
dented insights into chemical systems."” However, the vast chemical
space remains challenging to explore due to the high computa-
tional costs associated with accurate quantum mechanical (QM)
methods, particularly for large molecular systems.” While molecu-
lar mechanics offers computational efficiency, it lacks the accuracy
and transferability required for electronic property predictions.”
Semiempirical QM (SQM) methods, such as the Pariser—Parr-Pople
(PPP) model,” * strike a balance between accuracy and efficiency
by approximating the interaction between electrons at a reduced
computational cost.” The PPP model, for instance, provides a sim-
plified yet insightful description of 7 electrons in planar conjugated
molecules, accounting for interelectronic interactions within the
zero differential overlap (ZDO) approximation.” These intermediate
methods are particularly valuable for systems requiring electronic
property predictions beyond the reach of molecular mechanics.

Machine learning (ML) has emerged as a transformative tool in
this domain, enabling the efficient prediction of molecular proper-
ties with accuracy comparable with QM methods at a fraction of the
cost.'”!" Atomistic ML models are now integral to exploring com-
plex biology, chemistry, and materials science systems.” These mod-
els facilitate large-scale dynamic simulations'” and high-throughput
screening,'” significantly reducing the computational burden of
conventional density functional theory (DFT) calculations. By train-
ing on representative datasets, ML models predict properties for
new systems with remarkable efficiency, democratizing access to
computationally intensive analyses.'*

Thermally activated delayed fluorescence (TADF) emitters
exemplify the need for accurate electronic property predictions.
These materials achieve up to 100% internal quantum efficiencies
by up-converting non-radiative triplet excitons into radiative singlet
excitons through reverse intersystem crossing (RISC).'”'® Efficient
TADF emitters require a minimal singlet-triplet energy gap (AEst)
to facilitate RISC, along with strong oscillator strength (f) for effec-
tive light emission.” A recently discovered class of TADF emitters,
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known as INVEST (inverted singlet-triplet gap) molecules, chal-
lenges conventional paradigms by exhibiting a negative AEgr, with
the singlet state stabilized below the triplet state.'® Accurately mod-
eling such systems necessitates the inclusion of double-excitation
configurations,” " significantly increasing the computational cost
of QM methods. This limitation underscores the critical need for
efficient and accurate approaches to predict the electronic properties
of TADF emitters.

The A-ML framework addresses this challenge by leverag-
ing a lower-cost baseline, such as DFT or SQM methods, to
calibrate predictions to the accuracy of high-level QM methods
such as coupled-cluster or experimental results.”””° Recent stud-
ies have highlighted the potential of SQM methods as effective
baselines for A-ML models.”**” For example, Jorner et al. demon-
strated that a combination of configuration interaction singles (CIS)
and dynamic spin polarization (DSP) could partially describe the
inverted singlet-triplet gap in INVEST molecules.”® Although the
PPP+CIS+DSP theory has been shown to be useful for screen-
ing INVEST molecules, its poor correlation with Algebraic Dia-
grammatic Construction [ADC(2)] values for properties such as
oscillator strength is primarily due to the method’s inability to
capture wavefunction-dependent quantities accurately.”® This lim-
itation arises because PPP+CIS only corrects energies to the second
order without corresponding corrections to the wavefunction. In
this work, we address this limitation by combining the compu-
tational efficiency of the PPP+CIS method with the established
accuracy of ADC(2) predictions relative to higher-level methods
through the A-ML framework, which effectively corrects system-
atic deficiencies in the low-level method to align with high-level
reference results.

Building on this foundation, our study employs the PPP+CIS
method as the baseline for predicting electronic properties rele-
vant to TADF emitters. High-level QM calculations, specifically
ADC(2), serve as the target data. Using the A-ML approach imple-
mented in the deep tensor neural network (DTNN) framework,
SchNet,”” we validated four key properties of TADF emitters: sin-
glet energies (S1), triplet energies (T1), singlet-triplet gap (AEsr),
and oscillator strength (f). Our results demonstrate that this hybrid
approach, leveraging PPP+CIS as the baseline and SchNet for
machine learning, achieves high accuracy for key TADF-relevant
properties, including Si, T1, AEst, and f. In addition, we validate
the pre-trained model on the benchmark INVEST15 dataset™ to
showcase the transferability and generalizability of the model. Fur-
thermore, this framework can also be employed to screen TADF
molecules efficiently, enabling the identification of TADF candidates
with desirable properties. To our knowledge, this is the first applica-
tion of such a framework to TADF-relevant properties in the context
of OLED materials, paving the way for cost-effective and accurate
predictions that were previously unattainable. This study not only
validates the A-ML framework for modeling TADF emitters but also
establishes a robust platform for the efficient screening and design
of novel materials with desirable electronic characteristics.

Il. METHOD

To implement the A-ML framework for TADF-relevant prop-
erties, we utilized two distinct datasets, referred to as Dataset-I and
Dataset-II. Dataset-I was derived from a more extensive collection
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of 68695 rationally designed compounds, whose geometries were
optimized at the B97-3c level, with excitation energies computed at
the second-order algebraic diagrammatic construction, ADC(2)/cc-
pVDZ level’! From this extensive dataset, we selected a subset of
12000 molecules to form Dataset-I, ensuring a diverse representa-
tion of molecular structures and electronic properties. We chose this
dataset size to reduce the computational cost, as the training was per-
formed on a single NVIDIA RTX A6000 GPU. This ensured efficient
utilization of the computational resources while also showcasing
the framework’s capabilities. Dataset-II, on the other hand, com-
prises 250 substituted azaphenalenes, with geometries optimized at
the B3LYP/cc-pVDZ level and excitation energies calculated using
ADC(2)/cc-pVDZ.*> These two datasets provide a robust founda-
tion for training and validating the machine-learning models in this
study.

We adopted SchNet,” a deep learning architecture optimized
for atomistic systems, to implement the A-ML framework. SchNet,
as a variant of deep tensor neural networks (DTNNs), inherently
respects the fundamental symmetries of atomistic systems, such
as rotational and translational invariance, as well as invariance to
the ordering of atom indices.”” Its architecture utilizes continuous-
filter convolutional layers to effectively capture both spatial and
chemical interactions.”” The model represents each atom as a fea-

ture vector xi(l) € RP, where D denotes the feature space dimension
and [ represents the layer in the network. Atomic interactions are
iteratively updated T times through pairwise interactions between
feature vectors of atoms within a defined cutoff distance, incorpo-
rating information about the chemical environment and complex
many-body interactions. The continuous-filter convolution layers,
facilitated by filter-generating networks, refine these feature rep-
resentations. Finally, the model pools atom-wise updates to pre-
dict global molecular properties, ensuring an accurate and efficient
mapping of structure-property relationships.’

The machine learning pipeline was built using a combination
of well-established tools and frameworks. Data handling and pre-
processing were conducted using NumPy™ and Pandas,”> which
facilitated the organization and manipulation of molecular prop-
erty datasets. For data splitting and cross-validation, we utilized
scikit-learn’s train_test_split and KFold modules, enabling
robust performance validation.”® PyTorch’” served as the core deep
learning framework, while SchNetPack'*** provided pre-built mod-
ules for atomic structure representation and property prediction.
The Atomic Simulation Environment (ASE)* was employed to
handle atomic configurations, including reading and manipulating
XYZ files. Model performance was evaluated using TorchMetrics,
which provided metrics such as mean absolute error (MAE) and root
mean squared error (RMSE). These results were visualized and mon-
itored through TensorBoard,*’ ensuring a comprehensive evaluation
of the model’s predictive accuracy and training progression.

The model was implemented using SchNetPack 2.0,
framework specifically designed for atomistic simulations, to accu-
rately predict key TADF descriptors: excited singlet energies (S1),
excited triplet energies (T ), singlet-triplet gap (AEsr), and oscilla-
tor strength (f). SchNet’s continuous-filter convolutional layers were
utilized to model atomic interactions and effectively capture the
chemical environment. To ensure compatibility with SchNetPack,
the molecular dataset and the corresponding target properties,
calculated using the baseline PPP+CIS method, were converted
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into the Atomic Simulation Environment database (ASE db)
format.

The A-ML framework was designed to enhance property pre-
diction accuracy by incorporating a correction factor that accounts
for the discrepancy between the baseline PPP+CIS calculations and
the higher-level ADC(2) results. This correction factor expressed
mathematically in Eq. (1) served as the target property for the
machine learning model. By learning this correction, the model
bridges the gap between the computational efficiency of PPP+CIS
and the predictive accuracy of ADC(2). SchNetPack was customized
to predict this correction factor using molecular coordinates and
atomic numbers as input features. The final property prediction
was obtained by adding the predicted correction factor to the base-
line PPP+CIS value, as shown in Eq. (2). This two-step process
ensures that the computational efficiency of PPP+CIS is retained
while achieving the precision of ADC(2) calculations,

AEcorrection—factor = EADC(Z) — Eppp.cis, (1)
B =E + AEP @)
ADC(2) PPP+CIS correction—factor*

The training process involved splitting the dataset into train-
ing, validation, and test sets, with fivefold cross-validation used
to identify the best model and ensure robustness. Hyperparameter
optimization was conducted using Optuna,*' an efficient framework
for automated hyperparameter tuning. Key hyperparameters were
systematically optimized to achieve optimal performance, includ-
ing learning rate, batch size, number of convolutional layers, radial
basis functions, atom basis size, patience limits, and cutoff radius.
An early stopping mechanism was implemented to monitor vali-
dation loss and halt training when overfitting was detected. The
AdamW optimizer was employed for stable and efficient weight
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updates during training, with the optimization objective being to
minimize the validation loss, thereby ensuring the model’s gener-
alizability. By integrating SchNetPack 2.0 with Optuna, the train-
ing process was tailored to predict all four properties accurately.
This approach demonstrates the robustness and adaptability of the
A-ML framework for modeling TADF-related electronic properties,
combining computational efficiency with predictive precision.

lll. RESULTS
A. Dataset overview and characteristics

To evaluate the robustness and adaptability of our approach,
we analyzed two datasets of markedly different sizes, as shown in
Fig. 1. Dataset-I contains 12 000 molecules, while Dataset-II com-
prises only 250 molecules. Despite this stark contrast, our method
demonstrated consistent performance, highlighting its invariance
to dataset size and composition (vide infra). Both datasets were
curated to include potential INVEST candidates and consisted solely
of carbon, hydrogen, and nitrogen atoms [Figs. 1(c)-1(g)]. How-
ever, notable differences in molecular characteristics emerge upon
closer examination. The molecular weight distribution [Fig. 1(a)]
in Dataset-I is broader and peaks at higher values (around
250-300 g/mol), whereas Dataset-II [Fig. 1(e)] exhibits a narrower
range with molecular weights clustering around 180-200 g/mol.
This suggests that molecules in Dataset-I are generally larger and
more diverse in size compared to those in Dataset-II. The num-
ber of rings [Figs. 1(b)-1(f)] is remarkably similar across both
datasets, with most molecules containing three rings. This similar-
ity reflects a shared structural motif among the potential INVEST
candidates. However, the hybridization patterns reveal a key dis-
tinction: Dataset-I is dominated by sp and sp® hybridized atoms
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FIG. 1. Comparative analysis of Dataset-I (12 000 molecules) (Top row) and Dataset-Il (250 molecules) (Bottom row) illustrates [(a) and (e)] molecular weight distribution,
[(b) and (f)] number of rings, [(c) and (g)] atom types, and [(d) and (h)] hybridization types in both datasets.
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FIG. 2. Principal component analysis (PCA) plot illustrating the structural diversity
of Dataset-l and Dataset-Il. Representative molecular structures from each dataset
are highlighted in the inset boxes.

[Fig. 1(d)], whereas Dataset-II primarily features sp’ and sp’
hybridized atoms [Fig. 1(h)], reflecting a greater presence of sin-
gle bonds and increased structural diversity owing to varied sub-
stituents. These differences underscore the complementary nature
of the two datasets. While Dataset-I provides a broader representa-
tion of larger molecules with fewer substituents, Dataset-II explores
a narrower range of molecular sizes but a more diverse set of smaller
molecules with varying substitutions. This comprehensive analysis
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demonstrates that our approach remains robust and effective across
datasets with varying sizes and structural compositions.

The principal component analysis (PCA) depicted in Fig. 2
highlights significant differences in the structural diversity between
Dataset-I and Dataset-II. Dataset-I exhibits a tightly clustered dis-
tribution, indicating a high degree of structural similarity among its
molecules. This uniformity likely arises from the dataset’s limited
chemical composition, with molecules predominantly containing
double and triple bonds and a narrow range of structural features.
In contrast, Dataset-II demonstrates a broader distribution across
the PCA components, reflecting its greater structural diversity. The
molecules in this dataset incorporate a wider variety of bond types,
including a larger number of single bonds, as well as more varied
substitution patterns and molecular configurations. This increased
heterogeneity underscores the complexity of Dataset-II, distinguish-
ing it as a more diverse and chemically versatile collection compared
to Dataset-1.

Jorner et al. demonstrated that while the PPP+CIS+DSP the-
ory could be employed for screening INVEST molecules, it showed
poor correlation with ADC(2) values, particularly for oscillator
strengths.”® This discrepancy is primarily due to the PPP+CIS
method’s lack of second-order corrections to the wavefunction,
which is essential for accurate oscillator strength predictions. Sim-
ilarly, our analysis reveals that PPP+CIS predictions for TADF
properties exhibit weak correlations with ADC(2) values, as illus-
trated in Fig. 3, Figs. S1 and S2 of the supplementary material. In
particular, the scatterplots highlight significant discrepancies across
key properties: singlet-triplet energy gaps (AEsr), singlet excita-
tion energies (S1), triplet excitation energies (T;), and oscillator
strengths (f). For instance, the R? values for AEgr, f> S1, and
T, indicate that PPP+CIS significantly underperforms compared
to ADC(2), with noticeable deviations in magnitudes. Particularly
for AEst, PPP+CIS fails to capture the correct trend, consistently
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FIG. 3. Comparison of TADF excited-state properties calculated using PPP+CIS and ADC(2) for Dataset-l. The scatterplots show correlations for (a) singlet-triplet
energy gap (AEst) and (b) oscillator strength ( f). The weak correlations, as indicated by the R? values, highlight the limitations of PPP+CIS in accurately predicting
TADF properties. The comparison for triplet energies (T4 ) and singlet energies (S1) are shown in Fig. S1. A similar comparison for Dataset-Il is provided in Fig. S2.
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predicting positive AEst values even for INVEST molecules. These
findings underscore the inherent limitations of PPP+CIS in captur-
ing the nuanced electronic structure features required for accurate
TADEF property predictions. The gap between PPP+CIS and ADC(2)
values serves as a critical motivation for developing a A-ML frame-
work. By directly learning the corrections required to bridge this
gap, A-ML offers a robust and computationally efficient approach
to improve the predictive accuracy of PPP+CIS, enabling reliable
screening of TADF molecules. This approach not only addresses the
shortcomings of PPP+CIS but also provides a scalable solution for
large-scale molecular screening, paving the way for a more accurate
and efficient design of TADF emitters.

B. Dataset I: Model training and testing outcomes

For Dataset-I, consisting of 12000 molecules, the
train-validation—-test split was carefully designed to ensure a
robust evaluation of the model. The training set comprised 7680
molecules; the validation set included 1920 molecules; and the
remaining 2400 molecules were reserved for testing. This split was
chosen to balance the need for sufficient training data with adequate
samples for validation and testing, thereby enabling a thorough
assessment of the model’s generalization capabilities.

The dataset spans a wide range of AEsr from -0.4 to
1.0 eV, encompassing molecules with both positive and negative
singlet-triplet gaps. This diversity is critical for training a model
capable of predicting AEst across different chemical environments.
The model demonstrated high predictive accuracy, achieving an
R? value of 0.95 on the test set, as shown in Fig. 4(b). Notably,
the model performs consistently well for molecules with positive
AEst values and those near zero and INVEST candidates, which are
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TABLE I. Performance metrics for the machine learning model trained on Dataset-I.
RMSE and MAE are reported for both the training and test datasets across the pre-
dicted properties: AEgt, Sy, Ty, and f. The low error values indicate high model
accuracy and generalizability.

Target

property RMSE (train) MAE (train) RMSE (test) MAE (test)
Si 0.0034 0.0442 0.0042 0.0488
T 0.0021 0.0307 0.0028 0.0407
AEgst 0.0028 0.0419 0.0036 0.0455
f 0.0006 0.0167 0.0007 0.0162

particularly interesting for thermally activated delayed fluorescence
applications. However, a slight deviation is observed for molecules
with extreme negative AEst values (less than —0.2 eV). This dis-
crepancy may be attributed to the limited representation of such
molecules in the training set, highlighting the potential need for
targeted data augmentation in future work.

The loss metrics further underscore the model’s robustness
(see Table I). The RMSE for the train, validation, and test sets were
0.0028, 0.0029, and 0.0036, respectively, while the corresponding
MAE values were 0.0419, 0.0414, and 0.0455. These values indi-
cate minimal overfitting and excellent generalization, with only a
slight increase in loss from the training to the testing phase. The
training curves depicted in Fig. S3 show a smooth convergence
for RMSE and MAE, confirming the model’s stability during train-
ing. The model exhibits a strong predictive performance across the
dataset, accurately capturing the trends in AEst for the majority of
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FIG. 4. Performance evaluation of the neural network model for predicting [(a) and (b)] AEst, [(c) and (d)] T4 energies, [(e) and (f)] S¢ energies, and [(g) and (h)] fin
the Dataset-|. Predicted correction factor added to the PPP+CIS values, compared against the true ADC(2) value, for the training set (Blue) and test set (Purple), with a

consistent fit across datasets.
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molecules while maintaining low error metrics. The observed devi-
ations in extreme cases suggest opportunities for improvement by
including more diverse training samples or applying transfer learn-
ing techniques to handle under-represented regions of the dataset
better.

The triplet energies (T,) range from 0.28 to 2.8 eV, covering
the infrared to blue region. The model achieved exceptional accu-
racy in predicting triplet energies, with an R? value of 0.99 for both
the training and test sets, as shown in Figs. 4(c) and 4(d). The pre-
dictions are particularly reliable in the visible region, a critical range
for organic light-emitting diode applications. The RMSE values for
the training, validation, and test sets were 0.0021, 0.0029, and 0.0028,
respectively, while the MAE values were 0.0307, 0.0413, and 0.0407,
as depicted in Table I. These metrics highlight the model’s substan-
tial predictive accuracy and capability to generalize effectively across
the dataset.

Similarly, the singlet energies (S;) in Dataset-I range from
0.5 to 3 eV, covering emissions from the infrared to the blue region.
The model demonstrated excellent predictive performance, achiev-
ing an R* value of 0.99 and 0.98 for the training and test sets,
respectively, as illustrated in Figs. 4(e) and 4(f). The model reliably
predicts singlet energies across a broad range, including the 1.8-3 eV
region, which is particularly relevant for OLED applications due to
its alignment with visible-range emissions. The loss metrics are rep-
resented in Table I, where RMSE values for the training, validation,
and test sets were 0.0034, 0.0043, and 0.0042, respectively, while the
corresponding MAE values were 0.0442, 0.0484, and 0.0488. These
results underscore the model’s robustness and ability to generalize
effectively, with minimal discrepancies between training and test
losses, confirming the absence of overfitting.
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The dataset also exhibits a wide range of oscillator strengths
(f), varying from near zero to 0.35. The SchNet model was ini-
tially employed to predict oscillator strengths, achieving an R* value
of 0.77 (Fig. S4) for the test set. Recognizing the direct correla-
tion between oscillator strength and dipole moments, the model
was refined using the polarizable atom interaction neural network
(PaiNN),"? which explicitly incorporates dipole moment calcula-
tions. This refinement led to a marked improvement in perfor-
mance, with the R* value for the test set increasing to 0.85, as
depicted in Figs. 4(g) and 4(h). Excluding significant outliers further
enhanced the R? value to 0.87. The RMSE values for the training, val-
idation, and test sets were 0.0006, 0.0005, and 0.0007, respectively,
while the MAE values were 0.0167, 0.0157, and 0.0162, as depicted
in Table I. Additional correction factor plots for AEst, S1, T1, and f,
along with RMSE and MAE loss trends, are provided in Fig. S3.
The R* values for the actual vs predicted correction factors for all
properties across train and test sets are listed in Table S1. This pro-
gression of results demonstrates the model’s capability to accurately
predict singlet and triplet energies, as well as oscillator strengths,
thereby showcasing its utility in designing and screening molecules
for OLED applications.

C. Dataset II: Assessing robustness and consistency

To further validate the robustness of our approach and its
adaptability to varying dataset sizes, we tested our model on a
smaller dataset comprising 250 molecules (Dataset-1I). This dataset
primarily included substituted azaphenalenes with varied substitu-
tions, offering a diverse yet compact set of molecular structures.
The dataset was partitioned into 160 molecules for training, 40 for
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FIG. 5. Comparison of predicted and true values for key molecular properties [(a) and (b)] AEst, [(c) and (d)] T4, [(€) and (f)] S, and [(g) and (h)] f in the Dataset-Il.
The R? values for AEgr, Ty, Sy, and fare 0.88, 0.84, 0.90, and 0.93, respectively, indicating strong predictive performance across all properties.
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validation, and 50 for testing. To ensure consistency and relia-
bility across different data partitions, we employed fivefold cross-
validation. This approach provided a comprehensive assessment
of the model’s performance while mitigating the impact of data
splitting variability.

We also applied scikit-learn’s’® StandardScaler to normalize
the data, particularly addressing the small numerical values asso-
ciated with properties such as the singlet-triplet gap (AEsr) and
oscillator strength (). This preprocessing step improved numerical
stability and enhanced model performance. The model demon-
strated strong predictive accuracy across all properties, achieving
an R? value of 0.88 for AEsr for the test set [Fig. 5(b)]. For other
key properties, namely, S, Ty, and f, the R* values for the test set
were 0.90, 0.84, and 0.93, respectively, as shown in Fig. 5. These
results underscore the model’s robustness and predictive power
across diverse molecular properties.

The correction factor predictions for AEsr, Si, Ti, and f,
depicted in Fig. S5, further illustrate the model’s ability to general-
ize across different molecular features. The RMSE and MAE values
for both the train and test sets, summarized in Table II, highlight
the low prediction errors, reinforcing the reliability of the model.
Notably, for AEst, the RMSE and MAE values for the test set were
0.0351 and 0.0254, respectively, indicating precise predictions for the
singlet—triplet gap. Similarly, for S; and Tj, the test set RMSE values
were 0.0523 and 0.1558, respectively, while for f, the RMSE was as
low as 0.0015. The R* values for the actual vs predicted correction
factors for all properties across the train and test sets are listed in
Table S2. Overall, these results demonstrate the robustness and scal-
ability of our approach, even when applied to a smaller dataset. The
consistency of the predictive performance across different dataset
sizes and molecular properties underscores the generalizability of
the correction factor model, paving the way for its application to a
broader range of molecular systems.

D. Transferability on the benchmark dataset

We utilized the trained model, initially developed for predict-
ing AEsy in the azaphenalene dataset, to make predictions on the
benchmark INVEST15 dataset (see Fig. S6)* for the same prop-
erty, as depicted in Fig. 6. The molecules in the INVEST15 dataset
were optimized in their ground state using the B97-3c functional,
and excited-state calculations were performed at the LR-CC2/aug-
cc-pVTZ level of theory. Molecules containing elements such as
boron and phosphorus were excluded from the analysis, as the pre-
trained model does not account for these atoms. In addition, a

TABLE |II. Performance metrics for the machine learning model trained on Dataset-
Il. RMSE and MAE are reported for both the training and test datasets across the
predicted properties: AEst, S1, T4, and f. The low error values indicate high model
accuracy and generalizability.

Target

property RMSE (train) MAE (train) RMSE (test) MAE (test)
Si 0.0316 0.129 0.0523 0.1685
T 0.0957 0.0752 0.1558 0.1153
AEst 0.0239 0.0156 0.0351 0.0254

f 0.0009 0.0006 0.0015 0.0011
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FIG. 6. Performance of the pre-trained model on a few molecules from the bench-
mark dataset INVEST15.%0 The plot depicts the predicted vs actual AEgy values.
The model achieves an impressive R? = 0.86, highlighting its strong transferability
and ability to generalize well to similar molecules.

few molecules resembling those in the training set were omitted to
maintain evaluation integrity. The model delivered an impressive
predictive performance, achieving an R? value of 0.86, and demon-
strated exceptional classification ability by accurately distinguishing
INVEST molecules from those with a positive AEsr. This success-
ful application on a different dataset exemplifies effective domain
adaptation, where the model has transferred knowledge from the
azaphenalene training set to predict properties in a new but related
dataset.”’ These results underscore the model’s potential as a pow-
erful tool for both efficient molecular screening and high-accuracy
QM-level property prediction.

E. Hyperparameter tuning—Balancing accuracy
and robustness

In optimizing SchNetPack models using Optuna, several hyper-
parameters were identified as critical for modeling different molec-
ular properties. For the singlet-triplet gap (AEsr), the learning rate,
batch size, and #interactions emerged as key factors. The learning rate
dictates how the model adjusts its weights during training, striking
a balance between faster convergence and avoiding overshooting.
Batch size, which determines the amount of data processed before
updating the model weights, influences both stability and general-
ization. Notably, #interactions—the number of interaction layers in the
model—proved especially important for accurately predicting AEsr.
These layers refine atomic representations by iteratively capturing
complex interatomic interactions, essential for modeling the subtle
electronic effects underlying the singlet-triplet gap.

For singlet energy (S:), the interplay of 7,1 and #interactions Was
particularly significant. sy, which defines the number of radial basis
functions used to model atomic distances, plays a fundamental role
in representing the continuous nature of interatomic interactions.
This precise distance representation is crucial for energy predic-
tions, as molecular energy is inherently tied to the arrangement
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and interactions of atoms. Complementarily, fipteractions €nhances
the model’s ability to capture deeper, more complex atomic relation-
ships, thereby improving the accuracy of singlet energy predictions.
Triplet energy (T1) predictions, on the other hand, were predom-
inantly influenced by #interactions- This underscores the importance
of capturing intricate interatomic relationships and environmen-
tal interactions for modeling triplet states, which involve subtle
spin-related effects. These effects depend on the delicate balance of
electronic configurations, making them particularly challenging to
predict accurately without sufficient model depth.

For oscillator strength (f), a measure of the probability of elec-
tronic transitions between energy levels, both 7, and #interactions
were pivotal. The precise representation of atomic distances through
firpe enables the model to capture short-range spatial relationships,
which are critical for accurately modeling electronic structure and
transition probabilities. Meanwhile, #interactions €nhances the model’s
ability to account for the complex interatomic relationships that gov-
ern these transitions, thereby improving the prediction accuracy for
oscillator strength.

These findings highlight the overarching importance of
Minteractions across all tasks, as it enables the model to capture
nuanced atomic interactions and refine feature representations.
While #interactions consistently plays a critical role, other hyperpa-
rameters, such as n.¢ (for distance representation), batch size, and
learning rate (for optimization), exhibit varying levels of impor-
tance depending on the specific property being modeled. Interest-
ingly, the hyperparameters were found to be largely independent
of one another, meaning they could be optimized individually.
This independence simplifies the optimization process, allowing
for a focused approach to tuning each parameter without con-
cern for cross-dependencies. Consequently, this property-specific
yet independent tuning framework enables efficient hyperparame-
ter optimization tailored to the unique demands of each predictive
task.

IV. CONCLUSION

This work advances the capabilities of the SchNetPack frame-
work by developing a tailored and efficient methodology for accu-
rately predicting and screening molecular excited-state properties
critical to thermally activated delayed fluorescence emitters. By
integrating the computational efficiency of the PPP+CIS theory
with the accuracy enhancements provided by the A-ML compo-
nent, the model effectively addresses the inherent limitations of the
PPP+CIS approach in predicting precise property values. Hyperpa-
rameter optimization techniques, facilitated through Optuna, played
a pivotal role in fine-tuning the model, ensuring high predictive
performance while minimizing the risk of overfitting.

This study leveraged two varying-sized datasets, encompass-
ing molecules with diverse structural and electronic features, as
confirmed by principal component analysis. This diversity vali-
dated the model’s robustness and generalizability across a wide
chemical space. The model demonstrated exceptional accuracy
in predicting key TADF properties, including singlet (S;) and
triplet (T;) energies, the singlet-triplet gap (AEsr), and oscilla-
tor strength (f). Its performance in predicting oscillator strength
was of particular significance—a property for which PPP+CIS the-
ory alone shows weak correlations with high-level ADC(2) values.

ARTICLE pubs.aip.org/aipl/jcp

The inclusion of the PaiNN model, capable of accurately calculat-
ing dipole moments, proved instrumental, as oscillator strength is
directly linked to the spatial distribution and dynamics of dipole
moments. The pre-trained model was also validated on the bench-
mark INVEST15 dataset,”” which features molecules similar to
Dataset-1I. The model’s impressive performance highlights its trans-
ferability and generalization capabilities. Furthermore, the model’s
ability to predict AEst with high accuracy, including in the negative
region, highlights its potential for identifying and screening INVEST
molecules. This capability underscores the model’s applicability to
a broader range of TADF emitters, including those with uncon-
ventional electronic configurations. Hyperparameter optimization
revealed key insights into the model’s architecture: while #interactions
emerged as a consistently critical parameter across all properties,
others such as nyyy, batch size, and learning rate exhibited property-
specific importance. The independence of these hyperparameters
further streamlined the optimization process, enabling efficient and
targeted tuning to maximize performance.

In conclusion, the model represents a significant step for-
ward in computational design and prediction of TADF properties,
demonstrating exceptional accuracy, versatility, and efficiency. This
approach highlights the potential for integrating physics-inspired
models and machine learning to advance the understanding and
design of functional materials, paving the way for future studies to
incorporate more complex features and diverse datasets.

SUPPLEMENTARY MATERIAL

The supplementary material contains a comparison of excited-
state properties computed using PPP+CIS and ADC(2), a repre-
sentation of the benchmark set INVEST15, and a performance
evaluation of the neural network model for Dataset-I and Dataset-II.
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