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ABSTRACT: Optimizing organic solar cells necessitates a fundamental
understanding of how noncovalent interactions influence the miscibility
and stability of nonfullerene acceptor (NFA)−polymer blends. In this
study, we employ molecular simulations combined with data-driven
analysis to elucidate the impact of regioisomerism on phase morphology in
Y-series fused-ring NFAs. Specifically, we compare a C-shaped isomer
(CF) and an S-shaped isomer (SF) when blended with the donor polymer
D18. Our findings reveal that the CF blend exhibits superior miscibility,
attributed to stronger van der Waals interactions�including hydrogen
bonding and interactions involving sulfur and electronegative atoms�as
well as enhanced dipole−dipole interactions. These interactions
collectively contribute to greater blend stability, as supported by
noncovalent interactions and energy decomposition analyses. Furthermore,
k-means clustering of molecular dynamics trajectories was employed to assess miscibility, corroborating the superior miscibility of
the CF blend, while the SF blend demonstrated phase segregation. Voronoi tessellation analysis provides a geometric perspective,
linking uniform molecular packing in the CF blend to minimal void spaces, whereas the SF blend exhibits structural heterogeneity
and aspherical cavities. These insights establish a direct connection among isomeric configuration, intermolecular forces, and blend
morphology, offering a predictive framework for designing high-performance organic solar cells.
KEYWORDS: regioisomerism, molecular packing, phase formation, organic solar cell, multiscale simulations

1. INTRODUCTION
Organic solar cells (OSCs) have witnessed rapid advance-
ments, driven by innovative materials and intelligent device
engineering.1−7 A key factor behind this progress is the
development of fused-ring nonfullerene acceptors (FRNFAs),
particularly the Y-series acceptors.7−12 These acceptors have
been instrumental in enabling multiple charge transport
channels and enhances the power conversion efficiency
(PCE) of OSCs by strong and broad near-infrared light
absorption through the incorporation of electron-deficient
cores.13−15 To further improve photovoltaic efficiency, it is
essential to establish clear correlations between molecular
structure, morphology, macroscopic properties, and overall
device performance.16−19 Achieving this requires the precise
tailoring of nonfullerene acceptors to facilitate systematic
investigations into their structure−property relationships.

Among the various factors influencing OSC efficiency,
molecular geometry plays a pivotal role in determining both
material properties and device performance.20,21 Recent studies
have emphasized the significance of isomeric structures,
particularly in acceptor−donor−acceptor (A-D-A) conjugated
frameworks.22 In this context, Huang and coauthors synthe-
sized two isomeric Y-series FRNFAs�one with a C-shaped
(CF) geometry and the other with an S-shaped (SF)

geometry�to explore how these distinct structural config-
urations impact OSC performance. Their findings revealed that
while optical and electrochemical properties remained largely
unchanged between the isomers, substantial differences
emerged in molecular packing and device efficiency. Notably,
the C-shaped acceptor exhibited superior performance,
yielding a remarkable power conversion efficiency of 17.0%,
significantly outperforming its S-shaped counterpart. This
improvement was primarily attributed to reduced voltage loss
and distinct packing characteristics, even in the absence of the
conventional three-dimensional stacking network typically
observed in C-shaped Y-series FRNFAs.22 Moreover, the
study found that the SF:D18 (donor polymer) blend exhibited
a significantly higher Flory−Huggins interaction parameter (χ
= 2.70 K) compared to the CF:D18 blend (χ = 0.57 K),
indicating poor miscibility between SF and the donor polymer
D18. This poor miscibility led to extensive phase separation, as
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corroborated by atomic force microscopy (AFM) and
transmission electron microscopy (TEM) results.

While these experimental observations suggest a crucial role
for molecular geometry in OSC performance, several
fundamental questions remain unanswered. What types of
interactions govern the morphological differences between the
CF:D18 and SF:D18 blends? What are the key factors
enhancing miscibility in the active layer? Addressing these
questions requires a deeper understanding of the molecular-
level interactions that influence blend morphology and charge
transport.

To bridge this gap, we conducted comprehensive theoretical
studies employing molecular dynamics (MD) simulations,
density functional theory (DFT) calculations, and energy
decomposition analysis. These approaches allowed us to
systematically investigate the microscopic interactions between
C- or S-shaped NFAs and the D18 donor polymer within the
OSC active layer. Our simulation results revealed significant
differences in radial distribution functions (RDFs) for key
molecular pairs, highlighting interactions such as CH-π
interactions, hydrogen bonding, and other noncovalent
interactions involving sulfur and electronegative atoms (oxy-
gen, fluorine, and nitrogen). Notably, C-shaped NFAs
exhibited stronger interactions with the donor polymer, a
finding further supported by energy decomposition analysis.
To gain further insight into the morphological characteristics
of these blends, we employed a k-means clustering algorithm to
analyze cluster size distributions. Our results demonstrated
that C-shaped NFAs form smaller, well-dispersed clusters,
promoting better mixing with the donor polymer. In contrast,
S-shaped NFAs tended to aggregate into larger clusters, leading
to greater phase separation. These trends were further
validated by Voronoi analysis, reinforcing the conclusion that
C-shaped NFAs enhance miscibility and, consequently, OSC
efficiency.

In this manuscript, we present a detailed analysis of our
molecular simulations, providing fundamental insights into the
superior performance of C-shaped FRNFAs in OSCs. Our
findings not only corroborate experimental observations but
also offer a deeper understanding of how molecular geometry
influences intermolecular interactions and blend morphology.
By establishing these structure−property relationships, this
study contributes to the rational design of next-generation
OSC materials and advances the optimization of high-
efficiency organic photovoltaic devices.

2. METHODS
Figure 1 displays the molecular structures of CF, SF, and a monomer
unit of D18 studied in this work. CF and SF molecules contain 236
atoms, while D18 comprises 189. To focus on the short-range
noncovalent interactions that govern donor−acceptor miscibility and
morphological behavior, we modeled the donor polymer D18 using its
monomeric unit. While polymer chain conformation and flexibility are
important, simulating long polymer chains significantly increases
computational cost and introduces complexity related to chain
entanglement and self-assembly. Given that dispersion and dipolar
interactions operate over short distances, monomer−acceptor models
are sufficient to capture the key interaction features relevant to phase
morphology.23−25

The initial molecular structures of CF, SF, and D18 monomers
were constructed using GaussView.26 These structures were
optimized within density functional theory at the B3LYP-D3(BJ)/
6−31G(d,p) level. To ensure that the optimized geometries
correspond to true local minima, vibrational frequency calculations

were performed using the Gaussian09 software package.27 To model
bulk amorphous mixtures of pure NFAs and NFA-polymer blends,
MD simulations were carried out using the GROMACS engine.28,29

Accurate force-field parameters for CF, SF, and D18 molecules were
generated using the Sobtop program.30 This approach derives bonded
and nonbonded parameters (bonds, angles, and dihedrals) directly
from the Hessian matrix obtained via DFT-based frequency
calculations. A similar method was utilized in the literature to
optimize bonded parameters for organic molecules.31,32 Atomic
charges were assigned based on restrained electrostatic potential
(RESP2) calculations performed using the Multiwfn program.33

Geometry optimizations and DFT-based force field parametrization
were carried out using B3LYP/6−31G(d,p), which balances
computational efficiency and accuracy well. While this level does
not include explicit dispersion, van der Waals interactions were
accounted for in MD simulations via Lennard-Jones potentials with a
10 Å cutoff.

To prepare amorphous mixtures, 1000 monomers of CF and SF
were randomly packed into a cubic simulation box to generate pure
NFA phases. In the blended systems, 500 monomers of D18 were
mixed with 600 monomers of either CF or SF. The donor-to-acceptor
ratio used in the simulations reflects the experimental weight ratio
(1:1.2),32 which was directly applied to the number of molecules.
This simplification ensures consistent comparison between CF:D18
and SF:D18 blends while preserving the experimentally relevant
excess of acceptor content. This initial random packing ensured a
uniform distribution of molecules, minimizing biases in the starting
configuration. All systems underwent an initial energy minimization
using the steepest descent algorithm to remove steric clashes.
Subsequently, temperature annealing was performed in an NPT
ensemble, ramping from 100 to 800 K over 3 ns to enhance molecular
mixing and facilitate the attainment of an equilibrated morphology.
The simulations employed a canonical velocity rescaling thermostat34

to maintain temperature control, while pressure was regulated using a
Berendsen barostat.35 Long-range electrostatic interactions were
computed using the smooth particle mesh Ewald (PME) method.
Following the annealing step, a controlled cooling phase was
implemented in two stages: (i) from 800 to 600 K and (ii) from
600 to 300 K, with both steps performed under the same NPT
ensemble over an additional 3 ns. This gradual cooling was essential
for stabilizing the system morphology and preventing kinetically

Figure 1. Top: Illustration of molecular structures and nomenclature
for different fragments in CF, SF, and D18 molecules. Bottom:
Definitions used in this study for the fragment labels on NFAs, CF/
SF, and D18.
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trapped configurations. Once cooled to 300 K, the systems were
subjected to production MD simulations for an additional 3 ns in the
NVT ensemble. The Verlet leapfrog algorithm was used to integrate
the equations of motion with a time step of 1 fs.36 A real-space cutoff
of 1.3 nm was applied for nonbonded interactions, and the stability of
thermodynamic parameters (temperature, pressure, and potential
energy) was verified to ensure equilibrium was reached before
analysis. The steps employed in generating amorphous morphologies
followed the previous literature reports.37,38 Structural and interaction
analyses were conducted using multiple postprocessing tools. Initial
visualization of acceptor−donor interactions was performed using
VMD.39 Radial distribution functions were computed from the MD
trajectories using the TRAVIS package40,41 to quantify key molecular
interactions, including CH-π stacking, hydrogen bonding, and halogen
interactions.

To investigate the nature of noncovalent interactions (NCI)
between donor and acceptor molecules, we employed the
NCIPLOT4 package.42 100 configurations of D18 monomers located
within 6 Å of CF/SF monomers were extracted from the MD
trajectory spanning 3 ns. This distance threshold ensured that only
molecular pairs exhibiting significant noncovalent interactions were
considered. The NCI approach visually and quantitatively represents
weak interactions such as CH-π, halogen bonding, and van der Waals
forces, which are crucial in blend morphology and charge transport.

Beyond qualitative NCI analysis, we employed k-means clustering43

to classify the molecular packing motifs within the blended systems. k-
means clustering is an unsupervised machine learning method that
partitions data points into distinct clusters based on spatial proximity
and structural similarities. In this study, we computed the centroids of
conjugated rings representing the backbone chains of D18 and CF/SF
molecules. A distance matrix was constructed using these centroid
positions to account for interactions between different ring types,
including terminal-terminal, core-terminal, and terminal-core contacts.
The clustering was performed using the scikit-learn module,44 to
identify dominant packing arrangements and their relative prevalence
in each blend.

We performed Voronoi tessellation45,46 analysis to further
characterize the molecular organization and miscibility in the blended
systems. This method quantifies the local packing efficiency by

partitioning space into Voronoi cells, where each cell represents the
spatial domain closest to a given molecule. The molecular volume
ratio to local free space provides insight into blend homogeneity and
molecular dispersion. Voronoi tessellation was carried out using the
OVITO program,47 with centroid positions of terminal and core rings
from D18 and CF/SF molecules serving as input data points. This
analysis enabled a comparative evaluation of the free volume
distribution in both blends, shedding light on their packing
characteristics and phase behavior.

We performed energy decomposition analysis (EDA) using the
sobEDA program to better understand donor−acceptor interactions
at the electronic structure level.48 EDA allows the decomposition of
the total interaction energy into physically meaningful components,
elucidating the key stabilizing forces governing the blend morphology.
Specifically, we employed the dispersion-corrected Kohn−Sham DFT
(KS-DFT) approach to compute the total interaction energy of
donor−acceptor pairs, utilizing the wave functions of the isolated
molecular fragments. Given the significance of dispersion interactions
in organic electronic materials, we adopted the sobEDAw variant of
EDA, which provides a cost-effective alternative to symmetry-adapted
perturbation theory (SAPT).49,50 The sobEDAw method introduces a
weighting function (w) to partition the DFT correlation energy
(ΔEDFTc) into two terms: one incorporated into the dispersion
correction (ΔEdisp) and the other combined with exchange-repulsion
(ΔExrep). This approach effectively captures midrange Coulomb
correlation while ensuring a balanced treatment of dispersion
interactions. We adopted the computational protocol recommended
by Lu and Chen,48 using the B3LYP-D3(BJ) functional with the 6−
31+G(d,p) basis set. We employed the same level of theory, which
incorporates empirical dispersion corrections, to perform energy
decomposition analysis aimed at accurately capturing noncovalent
interactions. Prior benchmarking studies (e.g., Balci et al.51) support
the reliability of this approach for systems involving weak
intermolecular forces. Five random donor−acceptor dimer pairs
were extracted for EDA calculations for each blend. The decomposed
energy components included electrostatics (ΔEels), exchange-
repulsion (ΔExrep), orbital interactions (ΔEorb), and dispersion
correction (ΔEdisp), which correspond well to SAPT terms (ΔEels,
ΔEexch, ΔEind, and ΔEdisp, respectively). The cost-effectiveness and

Figure 2. Radial distribution function plots showing the interactions between the π-electron cloud of the central ring (C) in CF/SF molecules and
the hydrogen attached to (a) B1, (b) E, (c) M1, and (d) M2 groups of D18 molecules, highlighting differences in C−H···π interactions between
CF and SF blend.
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accuracy of the sobEDAw method make it a reliable alternative for
analyzing weak donor−acceptor interactions in large molecular
systems.

3. RESULTS AND DISCUSSION
Recent studies have highlighted the impact of molecular
geometry on the performance of NFAs in organic solar cells,
showing that C-shaped NFAs facilitate the formation of a well-
defined fibrillar network when blended with the D18 polymer,
in contrast to S-shaped NFAs.22 Given the crucial role of weak
interactions in determining blend morphology, as established
in our previous work,23 we first screened potential donor−
acceptor interactions based on distance criteria and performed
RDF analysis to assess the clustering of D18 molecules around
CF and SF monomers. This preliminary analysis provided
insight into the nature of noncovalent interactions, such as
hydrogen bonding and van der Waals forces, that drive
molecular aggregation and influence phase behavior in these
blends. To ensure clarity in describing specific molecular
fragments, side chains, and functional groups within NFAs and
the polymer matrix, we have adopted a custom nomenclature,
as detailed at the bottom of Figure 1. This nomenclature is
consistently used throughout the manuscript to maintain
precision in our discussion of molecular interactions.

Among the various noncovalent interactions, van der Waals
forces are particularly significant in systems containing
aromatic components. The π−π stacking interaction between
π-electron cloud of aromatic rings is known to play a critical
role in determining packing motifs in organic semiconductors.
To evaluate its contribution to the CF/SF−D18 blends, we
computed radial distribution functions between the centers of
the geometry of the aromatic rings in CF/SF and D18
molecules. The corresponding RDFs, shown in Figure S1, do
not exhibit any pronounced peaks within the characteristic
π−π stacking distance range (3.3−5.8 Å), indicating negligible
face-to-face interactions between the π-systems. This suppres-
sion of stacking can be attributed to the bulky aliphatic side
chains present on both CF/SF and D18, which sterically
hinder efficient π−π overlap. Notably, this observation is
consistent with our earlier work on similar conjugated polymer
blends relevant to organic solar cells, where π−π interactions
were also found to be weak or absent.23

Additionally, van der Waals interactions often manifest as
C−H···π interactions, where a C−H group donates to an
aromatic ring’s π-electron cloud. These interactions arise
primarily from a combination of dispersion and electrostatic
forces, with negligible contributions from hydrophobic effects.
Our previous studies on NFA−polymer blends have
demonstrated that such van der Waals interactions play a

key role in stabilizing blend morphology,23 underscoring their
importance in the self-assembly and miscibility of donor−
acceptor pairs in OSCs.

Building on our discussion of van der Waals interactions,
Figure 2 reveals that CF blend exhibit stronger C−H···π
interactions between the π-electron clouds of core rings (NFA)
and hydrogen atoms from various methyl-containing groups in
D18 (B1, E, M1, and M2) compared to SF blend. Notably, the
B1 group in CF blend displays a distinct RDF peak at
approximately 4.7 Å, whereas no corresponding peak is
observed in SF blend (Figure 2a), suggesting a more favorable
packing arrangement in CF-based systems. Similarly, the M1
group in CF blend exhibits a broad peak around 4.3 Å, absent
in SF blend (Figure 2c), further highlighting the enhanced van
der Waals interactions in CF-based blend. Steric effects arising
from the bulky molecular structures influence the packing
efficiency, leading to broader RDF peaks for methyl groups on
the terminal rings of D18 interacting with the core π clouds of
CF and SF molecules. This effect is particularly evident for the
E group, where the RDF peak in CF blend is significantly
broadened and exhibits increased intensity around 4.5 Å
compared to SF blend (Figure 2b), indicating stronger C−
H···π interactions in CF blend. Additionally, while SF blend
show a pronounced RDF peak for M2 at approximately 5 Å,
CF blend exhibit a peak slightly below 5 Å with a noticeable
shoulder near 3 Å (Figure 2d), suggesting that CH···π
interactions are more prevalent in CF-based systems. These
findings reinforce the idea that the molecular geometry of CF
facilitates stronger van der Waals interactions, potentially
contributing to its enhanced miscibility in blend with D18.

Hydrogen bonding arises when a hydrogen atom, covalently
bonded to an electronegative donor (D), interacts with an
electronegative acceptor (A), typically involving elements such
as oxygen, nitrogen, sulfur, and fluorine. A visual illustration of
random snapshots showing hydrogens involved in C−H···F
interactions in blended systems is presented in Figure S2.
During the analysis, a commonly accepted threshold (bond
distance ≤3.0 Å) was used to identify weak hydrogen bonds,
including those involving nontraditional donors such as C−H.
As shown in Figure S3a, CF blend exhibit a distinct RDF peak
at approximately 2.8 Å, corresponding to hydrogen bonds
between the M1 group of D18 and oxygen atoms. This peak is
notably absent in SF blend. Conversely, Figure S3c shows a
pronounced RDF peak at a similar distance for hydrogen
bonds between the M2 group of D18 and oxygen atoms in SF
blend. A similar interaction is also seen in the CF:D18 blend
with a lower peak height. Hydrogen bonds involving fluorine
or nitrogen are generally weaker than those with oxygen.
Figure S3b reveals a moderately enhanced RDF peak in SF

Figure 3. (a) RDF plot between the fluorine atom of D18 molecules and the sulfur atom in CF/SF molecules. (b, c) RDF plots between the oxygen
atom of CF/SF molecules and the sulfur atom attached to the (b) terminal ring (T3) and (c) core ring (C2) of D18 molecules, respectively.
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blend at around 2.9 Å, corresponding to hydrogen bonding
between the hydrogen atoms of the M1 group in D18 and the
fluorine atoms in CF/SF molecules. Meanwhile, Figure S3d
shows that CF blend exhibit a slightly stronger hydrogen
bonding peak at approximately 3.0 Å between the M2 group of
D18 and nitrogen atoms in NFA. Additionally, weak hydrogen
bonds involving the methyl hydrogens of D18 and the nitrogen
or fluorine atoms in CF/SF molecules are observed at around
3.0 Å, with alternating enhancements between CF and SF
blend, as shown in Figure S4. These observations suggest these
weak hydrogen bonds contribute comparably in both systems,
reinforcing the overall noncovalent interaction landscape.

Noncovalent interactions involving sulfur (S) with oxygen
(O) or fluorine (F) atoms also contribute significantly to weak
interactions in these blends. As shown in Figure 3a, the RDF
analysis reveals a broad peak around 3.5 Å for the interaction
between the fluorine atom of D18 and the sulfur atom of CF,
with a higher probability than in SF blend. Similarly, the sulfur
atom on the terminal ring (T3) of D18 exhibits a distinct RDF
peak at approximately 3.6 Å with oxygen atoms in CF blend,
whereas this interaction is absent in SF blend (Figure 3b). In
contrast, the interaction between the sulfur atom on the core
ring (C2) of D18 and oxygen atoms occurs at 3.6 Å in SF
blend and shifts to 3.8 Å in CF blend, with comparable
probabilities (Figure 3c). These results suggest that non-
covalent interactions are more pronounced in the CF blend
than in the SF blend, further influencing their molecular
packing and overall stability.

3.1. NCI Analysis. Noncovalent interactions in molecular
systems can be effectively analyzed by examining the electron
density, ρ(r), and its spatial variations. Using NCIPLOT, weak
interactions are identified by locating electron density critical
points (∇ρ = 0) that arise during atomic interactions.42 These
regions are indexed based on ρ and its derivatives, allowing a
detailed characterization of noncovalent interactions. The
reduced density gradient (RDG), a key parameter in this
analysis, is plotted against the electron density, providing a
two-dimensional representation of weak interactions. RDG is
defined using the following equation.52

= | |
r

r
RDG( )

1
2(3 )

( )
2 1/3 4/3 (1)

In low-density regions far from the molecule, where ρ decays
exponentially, RDG exhibits large positive values. However,
near critical points, where the gradient of ρ dominates, RDG
approaches zero, forming characteristic troughs that signal
weak interactions. This method relies on promolecular electron
density estimates, avoiding artifacts from electronic relaxation
typically introduced in self-consistent field calculations such as
Hartree−Fock or density functional theory.

Further analysis of electron density troughs is necessary to
determine the nature of these weak interactions�whether they
arise from steric effects, hydrogen bonding, or van der Waals
forces. While the electron density in these regions provides
insight into interaction strength, both attractive (e.g., hydrogen
bonds) and repulsive (e.g., steric effects) interactions may
coexist in the same RDG space.

The Laplacian of the electron density (∇2ρ), representing
the net flux of electron density in a given region, can help
distinguish between attractive and repulsive interactions. A
negative ∇2ρ indicates electron density accumulation, charac-
teristic of bonding interactions, while a positive ∇2ρ signifies

density depletion, often associated with steric repulsion.
However, since ∇2ρ is dominated by the strong negative
contributions near nuclei, it does not provide a direct
classification of weak interactions. Instead, decomposition
into three principal eigenvalues (λ1, λ2, λ3) offers a more
refined approach, with λ1 < λ2 < λ3 such that ∇2ρ = λ1 + λ2 +
λ3. Near nuclear positions, all eigenvalues are negative, whereas
away from nuclei, λ3 becomes positive.

For noncovalent interactions, the sign of the second
eigenvalue (λ2) is particularly useful. A negative λ2 (λ2 < 0)
indicates density accumulation perpendicular to the bond,
typical of attractive interactions such as hydrogen bonding.
Conversely, steric repulsion depletes density, leading to a
positive λ2, while van der Waals interactions, characterized by
minimal density overlap, yield λ2 values close to zero (λ2 ≈ 0).
Therefore, the sign of λ2 effectively differentiates weak
interactions, while the electron density magnitude reflects
their strength.53

The RDG plot (Figure S5) visually represents these
interactions, where attractive forces appear in green and
blue�indicating van der Waals interactions [(signλ2)ρ ≈ 0]
and hydrogen bonds [(signλ2)ρ < 0], respectively−while
repulsive steric interactions are shown in red due to positive
(signλ2)ρ values.54 The RDG analysis further reveals that CF
blend exhibit stronger van der Waals interactions than SF
blend, as indicated by the more prominent regions in the
(signλ2)ρ distribution around the value of zero.

To quantify the strength of these interactions, the integral
density was computed over a range of (signλ2)ρ values from
−0.1 to 0.1, dividing interactions into three categories: strongly
attractive (−0.1 a.u. ≤ (signλ2)ρ < −0.02 a.u.), weak van der
Waals interactions (−0.02 a.u. ≤ (signλ2)ρ ≤ 0.02 a.u.), and
repulsive interactions (0.02 a.u. < (signλ2)ρ ≤ 0.1 a.u.). The
variation in integral density over MD trajectories for the
attractive, van der Waals, repulsive, and total interaction
regions is shown in Figure S6. Previous studies have shown
that lower integral density values correlate with stronger
binding energies.55

As summarized in Table 1, the total mean electron density in
the CF blend (0.0165) is slightly lower than in the SF blend

(0.0194), indicating stronger noncovalent interactions in the
CF system. The mean integral density in the attractive region is
marginally lower for the CF blend (0.0040) than the SF blend
(0.0049), while in the van der Waals region, the CF blend also
exhibits a lower integral density (0.0112) compared to the SF
blend (0.0132). This trend suggests that the CF blend
experiences enhanced attractive and van der Waals inter-
actions. Meanwhile, steric repulsion, which counteracts these
attractive forces, remains nearly identical between the two
systems. Overall, the predominance of noncovalent inter-
actions over steric effects results in tightly bound systems in
both cases, with the CF blend exhibiting slightly stronger
binding than the SF blend.

3.2. Energy Decomposition Analysis. We further
performed a DFT-based energy decomposition analysis to

Table 1. Mean Value of Integral Density in Different
Regions Corresponding to NCI Analysis

system ρtot ρelec ρVdw ρrepul

CF:D18 0.0165 0.0040 0.0112 0.0012
SF:D18 0.0194 0.0049 0.0132 0.0013
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elucidate the nature of noncovalent interactions in these
systems. This method breaks down the total interaction energy
into its fundamental components, providing deeper insight into
the dominant forces that govern binding stability. The key
contributors�electrostatic interactions, orbital (induction)
effects, and dispersion forces�were analyzed to determine
their relative significance in the CF and SF blends. As
summarized in Table 2, electrostatic interactions, which are

particularly influential at larger intermolecular distances, are
noticeably stronger in the CF:D18 blend (−9.0 kcal/mol) than
in the SF:D18 blend (−6.9 kcal/mol). This 30.4% increase in
electrostatic stabilization enhances intermolecular binding in
the CF system. Likewise, orbital (or induction) interaction
energy, which accounts for polarization effects arising from the
permanent multipoles of one monomer polarizing the electron
density of the other, is primarily attributed to dipole−dipole
contributions and is used here to describe dipole−dipole
interactions. It contributes more significantly to the CF:D18
blend (−4.3 kcal/mol) than the SF:D18 blend (−3.6 kcal/
mol), indicating stronger dipole interactions and increased
electronic stabilization in CF.

Dispersion interactions emerge as the dominant attractive
force in both systems, aligning with the enhanced van der
Waals interactions previously identified in the RDF and NCI
analyses. The CF:D18 blend exhibits a significantly stronger
dispersion contribution (−39.9 kcal/mol) than the SF:D18
blend (−32.9 kcal/mol), reinforcing the conclusion that van
der Waals forces play a crucial role in stabilizing the CF system.
Although exchange-repulsion is higher in the CF:D18 blend
(29.6 kcal/mol) than in the SF:D18 blend (25.0 kcal/mol), the
net interaction remains stronger in CF:D18 due to the greater
attractive contributions from dispersion and induction. Overall,

the EDA results are in excellent agreement with the RDG-
based NCI analysis, confirming that noncovalent interactions,
particularly dispersion and electrostatics, play a pivotal role in
dictating the stability of these blends. The enhanced attractive
interactions in the CF system lead to a more tightly bound and
stable molecular arrangement compared to the SF blend.

3.3. k-Means Clustering Analysis. To quantitatively
assess the molecular packing in CF and SF blends, we applied
machine learning-based clustering analysis using distance
matrices derived from MD trajectories. The centroids of key
molecular fragments�terminal-terminal (TT), terminal-core
(TC), and core−core (CC) rings�were extracted for each
NFA-polymer dimer to construct the distance matrices. Figure
4c shows a schematic representation of this process, while
Figure 4a,b illustrates the distribution of these centroids in CF
and SF blends. The final distance matrix for CF blend
comprises 2228 data points, whereas, for SF blend, it contains
2108 data points. To ensure robust clustering and avoid
overfitting to noise in these data points, we determined the
optimal number of clusters using both the elbow method and
the Calinski-Harabasz Index. These approaches evaluate the
trade-off between model complexity and within-cluster
compactness, allowing us to identify the number of clusters
that best capture the intrinsic structure of the data without
introducing artificial segmentation.

3.3.1. Optimal Clustering via k-Means. To identify distinct
packing motifs within the blends, we employed k-means
clustering, a widely used unsupervised learning algorithm that
partitions data into k clusters by minimizing the within-cluster
sum of squares (WCSS).56 However, determining the optimal
number of clusters (k) is nontrivial. We first applied the elbow
method, which involves computing WCSS for a range of k
values (typically 1 to 20) and identifying the inflection point in
the WCSS curve, often termed the “elbow”. This point
suggests a balance between cluster compactness and computa-
tional efficiency.

To further validate the optimal k value obtained from the
elbow method, we employed the Calinski-Harabasz Index
(CHI).57 While the elbow method relies on subjective
interpretation of distortion trends, the CHI offers a robust,
quantitative alternative by evaluating the ratio of between-
cluster variance to within-cluster variance. CHI evaluates the
quality of clustering results by balancing two fundamental
characteristics: cluster separation and cluster compactness.

Table 2. Decomposed Energy Components (in kcal/mol)
from DFT-Based Energy Decomposition Analysis (EDA)
for CF:D18 and SF:D18 Blendsa

system electrostatic
exchange-
repulsion orbital dispersion

CF:D18 −9.0 (30.4%) 29.6 (18.4%) −4.3 −39.9 (21.3%)
SF:D18 −6.9 25.0 −3.6 −32.9

aThe percentage values represent the relative difference between the
CF and SF blends for each energy component.

Figure 4. Analysis of molecular packing in CF and SF blends using centroid-based distance matrices. Visualization of the centroid positions of
NFA-polymer rings in (a) CF and (b) SF blend. (c) Schematic representation of the workflow for constructing a distance matrix based on terminal-
terminal (TT), terminal-core (TC), and core−core (CC) ring distances in the MD trajectory.
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Cluster separation refers to how distinctly different clusters are

from one another, measured by the spread of their central

points relative to the overall data set’s center. Cluster

compactness assesses how closely grouped data points are

within their assigned clusters, calculated by the average

proximity of points to their cluster’s central reference. The

CHI score is defined as

=

=

=

i
k
jjj y

{
zzz

i
k
jjj y

{
zzz

n c c k

x c n k

CHI

Between Cluster Variance /( 1)

Within Cluster Variance /( )

i
k

i i

i
k

x C i

1

2

1

2

i

(2)

where k is the number of clusters, ni is the number of data
points in cluster i, ci is the centroid of cluster i, c is the global
centroid of the data set, and Ci is the set of points in cluster i. A

Figure 5. Determination of the optimal number of clusters (k) for k-means clustering in CF and SF blends. (left) Calinski-Harabasz Index (CHI)
scores as a function of cluster numbers, indicating the optimal k. (right) Inertia plot (Elbow method) showing the within-cluster sum of squares
(WCSS) for different k values.

Figure 6. Two-dimensional visualization of k-means clustering (k = 6) for CF and SF blends: (a, c) Principal Component Analysis (PCA) plots for
CF and SF blends show the distribution of clusters in the first two principal components. (b, d) t-distributed Stochastic Neighbor Embedding (t-
SNE) plots for CF and SF blends, revealing distinct clustering patterns based on nonlinear relationships.
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higher CHI score indicates clusters that are both well-
separated and compact. To determine the optimal k value, k-
means clustering was iteratively applied over a range of k
values, and the value of k that yields the maximum CHI score
was selected. This method automates cluster selection by
eliminating the visual subjectivity inherent in the elbow
method while also ensuring computational efficiency and
scalability. As shown in Figure 5, both the elbow method and
CHI analysis consistently suggest six as the optimal number of
clusters for both CF and SF blends. However, due to the
differences in data set sizes between the two blends, direct
comparison of CHI or elbow scores does not provide an
absolute measure of clustering quality.

3.3.2. Cluster Visualization and Structural Interpretation.
After determining the optimal number of clusters, we applied
two dimensionality reduction techniques to visualize the
clustering results: Principal Component Analysis (PCA) and
t-distributed Stochastic Neighbor Embedding (t-SNE).

3.3.2.1. PCA-Based Cluster Analysis. PCA was selected
because it can efficiently reduce the data set’s dimensionality
while preserving as much variance as possible. It is defined as
an orthogonal linear transformation that projects the data onto
a lower-dimensional subspace, known as the principal
subspace, such that the first coordinate (the first principal
component) captures the greatest variance, the second
coordinate the next highest variance, and so on. PCA offers
a linear transformation that can be readily interpreted in terms
of the original variables, and the transformation is expressed as

=Y WX (3)

where Y represents the transformed data (principal compo-
nents), W is the eigenvectors of the covariance matrix
(principal component coefficients), and X represents the
mean-center data matrix with dimensions n × p (n, samples, p,
features).

As shown in Figure 6a,c, PCA analysis indicates that the first
principal component (PC1) accounts for 16.40% of the
variance in CF blend and 18.10% in SF blend, suggesting that
CF blend exhibit more distributed molecular interactions. In
contrast, the second principal component (PC2) contributes
nearly equally in both cases (CF: 11.52%, SF: 11.47%). The
two-dimensional PCA plot reveals that clusters in CF blend are
less well-separated than those in SF blend, indicating a more
homogeneous distribution of molecular fragments in CF blend
(less segregation) compared to SF blend, where distinct
molecular packing motifs emerge (more segregated morphol-
ogy).

3.3.2.2. t-SNE-Based Cluster Analysis. To complement
PCA, we applied t-SNE, a nonlinear dimensionality reduction
method that preserves local relationships and helps visualize
clustering patterns. t-SNE converts high-dimensional Euclidean
distances into conditional probabilities representing similarities
between data points. This approach is beneficial because it
reveals complex patterns that might not be apparent using
linear techniques like PCA.
t-SNE primarily aims to minimize the Kullback−Leibler

(KL) divergence between a high-dimensional probability
distribution P and a corresponding low-dimensional distribu-
tion Q. The KL divergence quantifies the dissimilarity between
these two distributions. Subsequently, t-SNE employs an
iterative algorithm that adjusts the positions of points in the
low-dimensional space so that Q closely approximates P. This
is accomplished by minimizing a cost function, C, through a

gradient descent method that determines the direction and
magnitude of the necessary adjustments. The cost function C is
defined as follows:
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where P and Q represent high- and low-dimensional
distributions, respectively.

As shown in Figure 6b,d, t-SNE visualizations confirm the
clustering trends observed in PCA. The CF blend exhibits a
broad dispersion of points along the t-SNE1 and t-SNE2 axes,
indicating a more continuous distribution of molecular
fragments and weaker clustering patterns. Although local
groupings exist, the boundaries between clusters in the CF
blend are not sharply defined. In contrast, the SF blend forms
well-separated, compact clusters, signifying a more distinct
molecular packing arrangement. Overall, SF blend demon-
strates superior clustering quality, with k-means identifying six
well-separated clusters that achieve a better balance between
intracluster cohesion and intercluster separation. Notably, the
perplexity parameter, which determines the balance between
local and global structure, was optimized using the silhouette
score. The CF blend was best represented with a perplexity of
445.0 (KL divergence: 0.27), whereas the SF blend required a
lower perplexity of 330.0 (KL divergence: 0.31), suggesting
that SF blend exhibit a more localized packing structure.

The clustering analysis provides critical insights into the
morphological differences between CF and SF blends:

• CF blend exhibit more uniform packing, with molecular
fragments more evenly distributed across the system,
leading to a more continuous and less segregated
morphology. This dense mixing suggests strong
intermolecular interactions, potentially contributing to
better charge transport properties.

• On the other hand, SF blend demonstrate well-defined
clusters, indicating a segregated molecular packing
arrangement where TT, TC, and CC rings remain
more distinctly grouped. This suggests a preference for
phase-separated domains, which could influence me-
chanical properties and charge transport pathways
differently than CF blend.

The machine learning-based clustering approach reveals that
CF blend promote a more homogeneous mixing of molecular
fragments, whereas SF blend tend to form distinct molecular
aggregates. These findings align with our previous analyses,
including RDF and NCI results, highlighting stronger
dispersion interactions and reduced phase segregation in CF
blend.

3.4. Voronoi Analysis. Voronoi analysis, a geometric
partitioning technique, divides space into regions (cells)
surrounding discrete points, such as phase domains or
molecular centroids, where each point within a given cell is
closer to its central site than any other. Constructed using
perpendicular bisectors between neighboring sites, Voronoi
tessellations provide a robust framework for analyzing spatial
distributions in polymer blends.58,59 When applied to phase-
separated systems, this method enables quantification of
microstructural uniformity, pore distribution, and domain
arrangement by statistically evaluating cell areas and
coordination numbers. For instance, Voronoi diagrams of
EVA/PMMA copolymer blends revealed that reduced pore
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diameters and enhanced uniformity improved mechanical
properties.60 Similarly, breath-figure patterns on polystyrene
surfaces were analyzed using Voronoi polygons to assess
droplet coordination and 6-fold symmetry, linking morphology
to solvent volatility and humidity.61 A key advantage of the
Voronoi-based approach is its computational efficiency, which
eliminates the need for resource-intensive simulations. This
technique bridges statistical morphology with predictive
modeling by transforming complex microstructures into
quantifiable geometric parameters, making it a versatile tool
for optimizing polymer blend design.

In our study, Voronoi analysis was performed using the
centroids corresponding to nonfullerene acceptors’ terminal
and core regions and polymers extracted from molecular
dynamics trajectories, similar to the clustering approach used
in k-means analysis. We analyzed the probability distribution of
atomic volume versus cavity radius to evaluate the miscibility
and packing efficiency of polymer blends. Here, the cavity
radius represents the largest empty space adjacent to a given
particle, while atomic volume quantifies the local territory
occupied by the particle through its Voronoi cell. A strong
positive correlation between Voronoi volume and cavity radius
suggests loose packing with defect-rich regions, whereas a weak
or negative correlation indicates dense molecular environments
or aspherical cavities. Thus, data points with smaller cavity
radii relative to Voronoi volumes signify efficient packing,
while larger cavities highlight structural imperfections or
functional voids.

Figure 7a shows the distribution of atomic volume and
cavity radius for CF blend. The data points exhibit tight
clustering up to cavity radii of approximately 17.5 Å and
atomic volumes around 5000 Å3, indicative of efficient
molecular packing with minimal void spaces. This suggests a
homogeneous microstructure dominated by cohesive inter-
actions. Although our simulations are limited in capturing
mesoscale fibrillar structures, the observed enhanced donor−

acceptor miscibility and local morphological homogeneity in
the CF:D18 system suggest contributing to enhanced
mechanical stability. This inference aligns with previous
experimental findings, where increased miscibility in polymer
blends such as EVA/PMMA60 and PVDF/PLLA62 was shown
to enhance tensile strength, fracture toughness, and elongation
at the breaking through more uniform morphology and better
stress transfer between phases. In contrast, SF blend (Figure
7b) display a broader distribution extending to larger cavity
radii (19.5 Å) and atomic volumes (∼6000 Å3), reflecting
localized segregation and loose packing. The positive
correlation between these parameters in SF blend supports
the presence of aspherical cavities or structural imperfections,
likely stemming from incompatibilities in NFA-polymer
interactions. Overall, the reduced cavity radii and atomic
volumes in CF blend indicate superior mechanical stability,
whereas the broader distribution in SF blend highlights regions
susceptible to stress concentration. These findings align with
previous studies linking Voronoi metrics to material perform-
ance,60 further validating the use of geometric partitioning
techniques for assessing polymer blend morphology.

Figure 7c,d depict Voronoi tessellations of particles, with a
color gradient representing the volumes of the Voronoi cells.
Based on the visual representation of the Voronoi cell
distributions, distinct differences emerge between the CF and
SF blends. The CF blend exhibits a more uniform distribution
of cell sizes, especially in the central region, where a
predominance of purple and magenta cells arranged compactly
suggests efficient molecular packing. Conversely, the SF blend
displays greater variability in cell sizes and shapes, with a less
organized distribution of color components. This hetero-
geneity and more pronounced gaps and irregularities between
adjacent cells visually confirm the presence of aspherical
cavities and a looser packing arrangement compared to the CF
blend.

Figure 7. Probability distribution of atomic volume as a function of cavity radius for (a) CF and (b) SF blends, illustrating differences in molecular
packing and void distribution. Voronoi tessellations of (c) CF and (d) SF blends, where the color gradient represents Voronoi cell volumes,
highlighting variations in spatial organization and packing efficiency.
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These visual distinctions correlate strongly with the
quantitative findings from the probability distribution analysis.
The compact and uniform structure of the CF blend’s Voronoi
cells aligns with the observed tight clustering in the atomic
volume versus cavity radius plot, further substantiating the
homogeneous microstructure and minimal void spaces. In
contrast, the SF blend’s more varied cell sizes and irregular
shapes reflect the broader distribution in its atomic volume and
cavity radius data, supporting the interpretation of localized
segregation and looser packing. The visual evidence reinforces
the conclusion that the CF blend exhibits superior
morphological homogeneity compared to the SF blend.

4. CONCLUSIONS
Our study highlights the critical role of noncovalent
interactions in determining the stability and structural integrity
of CF and SF polymer blends. Radial distribution function and
noncovalent interaction analyses reveal that despite their
similar isomeric structures and comparable electronic proper-
ties, subtle differences in geometrical configurations lead to
stronger van der Waals and dipole−dipole interactions in the
CF blend. Energy decomposition analysis further supports
these findings, showing that electrostatic and dispersion
interactions contribute more significantly to the stability of
the CF blend, reinforcing their superior NFA-polymer binding.

The absence of characteristic π−π stacking in within the
characteristic π−π stacking range (3.3−5.8 Å) in either blend
is consistent with prior findings in polymer−fullerene and
polymer-NFA systems where bulky side chains sterically hinder
ordered stacking.63,64 Instead, local packing in both CF:D18
and SF:D18 blends is governed by alternative noncovalent
interactions such as C−H···π and C−H···O contacts involving
side chains and aromatic moieties. NCI analysis and energy
decomposition revealed that these interactions are stronger
and more frequent in the CF blend compared to the SF blend.
These results indicate that the CF blend exhibits more
favorable packing not through conventional π−π stacking but
via enhanced cohesive noncovalent interactions and denser
local organization.
k-means clustering analysis demonstrates that machine

learning techniques provide valuable insights into the
miscibility of NFA−polymer systems. The results indicate
that CF blend exhibit a well-mixed distribution of terminal-
terminal, terminal-core, and core−core interactions, while SF
blend show more segregated and clustered arrangements. This
poor miscibility in SF blend is likely a key factor in their
reduced power conversion efficiency, aligning with previous
experimental observations.

Voronoi analysis further substantiates these findings by
offering a geometric perspective on molecular packing. The CF
blend displays a more uniform distribution of Voronoi cell
sizes, indicative of efficient molecular packing with minimal
void spaces. In contrast, the SF blend exhibits greater cell size
and shape variability, with larger cavities and structural
irregularities that suggest localized segregation. The combina-
tion of quantitative (probability distribution functions) and
visual (Voronoi tessellation) analyses confirms that CF blend
form a more cohesive and mechanically stable morphology,
whereas SF blend are prone to defects and looser packing.

Overall, our results emphasize that even slight variations in
the isomeric configuration of NFAs can profoundly affect
noncovalent interactions within a polymer matrix. These
differences directly influence the blends’ miscibility, stability,

and mechanical performance, ultimately impacting their
suitability for organic electronic applications. By integrating
molecular simulations with data-driven techniques such as k-
means clustering and Voronoi analysis, this study provides a
comprehensive framework for understanding and optimizing
NFA−polymer interactions in next-generation materials.
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