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ABSTRACT: Zinc(II)porphyrin catalyzed light induced C−H
arylation of heteroarenes from anilines is discussed. The method is
nontoxic and efficient, using only 0.5 mol % of porphyrin catalyst
to produce bi(hetero)aryls in good yields. This work demonstrates
the potential use of porphyrin photocatalysts as efficient and robust
alternatives to organic dyes.

Photoredox catalysis is a rapidly growing area of chemical
synthesis that uses visible light as its primary energy

source.1 During photoredox catalysis, a light absorbing dye
(photocatalyst) can trap the photon energy and get activated,2

which then induces an organic molecule/substrate to
participate in a distinctive reaction pathway that may not be
possible to achieve thermally.3 Photoredox catalysis is
representative of sustainable and green chemistry, as it uses
freely available, nonhazardous light energy and converts it into
chemical energy.4 In the past few decades, photoredox catalysis
has been used in various applications viz. CO2 reduction, water
splitting, dye sensitized solar cells (DSSCs), etc.5 It has been
extensively used in different types of cross-coupling reactions
to make C−X, C−C, C−O, C−S bonds and cycloaddition
reactions.6−8 Seminal contributions from MacMillan and co-
workers involve widespread usage of Ru(II) and Ir(III)-
polypyridyl complexes as photocatalysts for C−C bond
formation and C−H activation reactions.9,10 Similarly, Yoon’s
group has applied photoredox catalysis for cycloaddition
reactions, whereas Stephenson and co-workers used it for
natural product synthesis and reduction dehalogenation
reactions.11,12

Typically, after light irradiation a photoredox catalyst can
undergo single electron transfer (SET) with the organic
substrate or vice versa.13 A synergism between the electro-
chemical and photophysical properties of photoredox catalysts
and substrates defines the criteria for selecting the correct
photoredox catalyst.14 Based on electrochemical properties, the
photoexcited catalyst (PC*) is accountable for the photo-
induced electron transfer initiating a cycle by a reductive or
oxidative quenching pathway.15 Ru(II) and Ir(III)polypyridyl
complexes have been extensively explored in catalyzing organic

substrates (Chart S1).16 Due to the high cost and toxic nature
of the heavy metal complexes, organic-dye-based catalysis is
currently studied. Organic dyes like eosin Y are pH dependent
and have ineffective reduction power.17 These limitations of
metal complexes and organic dyes attract more attention
toward utilizing macrocyclic complexes like porphyrins as
photoredox catalysts.18 Porphyrin macrocycles are essential for
survival, as they play major role in photosynthesis and oxygen
transport.19 These macrocyclic complexes have the potential to
undergo oxidation and reduction processes along with good
absorption in the visible region, which makes these molecules
more potent for photochemical reactions and photoredox
catalysis. Features such as being nontoxic and biodegradable
are the main advantages of these complexes. Due to their
unique properties a variety of organic transformations, such as
oxidations, reductions, epoxidation, carbon−carbon, and
carbon−heteroatom bond formations, are routinely catalyzed
by metalloporphyrins.20

It has always been challenging to effectively build C−C
bonds in a safe, affordable, and environmentally friendly
manner. Due to the prevalence of bi(hetero)aryl structural
motifs in organic materials, agrochemicals, and active
medicinal components, their synthesis is one of the most
significant transformations in organic chemistry.21 Direct C−H
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arylation of heteroarenes has drawn much attention since it can
avoid double preactivation required by both the substrates.
Diazonium salts have been widely used in arylation processes
because they contain a weak and labile C−N link in their
structure.22 Since the 1930s, the copper-catalyzed version of
this transition also known as the Meerwein arylation has been
recognized, but still it has some significant limitations,
including low yields and high catalyst loading.23 There are
various strategies reported in literature modifying the original
synthetic method using thermal and photochemical reaction
conditions.24 König et al. reported eosin Y catalyzed direct
arylation of heteroarenes, enol acetates, and alkenes with
diazonium salts.25 Ru(II) complexes and titanium oxide
transition metal catalysts were used in photoredox catalysis
for arylation reactions.26 In 2016, Kadish and co-workers used
free-base porphyrins and zinc-porphyrins as photoredox
catalysts for the reaction of aldehydes with diazo compounds.27

Later König and Gryko in a collaborative work demonstrated
light-induced arylation of heteroarenes in moderate to good
yields using diazonium salts as substrates.28

Herein, we report an efficient and versatile method of C−H
arylation of heteroarenes from anilines using 0.5 mol % of
photoredox catalyst. The meso-heteroaryl substituted zinc
porphyrins were synthesized and used as photocatalysts
under visible light. The electrochemical, photophysical, and
DFT studies were performed to demonstrate single electron
transfer from a zinc porphyrin catalyst to the substrate during
the course of C−H arylation of various heteroarenes.
The zinc porphyrins P1, P2, P3, and P4 were synthesized by

condensation of 1-naphthaldehyde and 9-butyl-3-(di(1H-
pyrrol-2-yl)methyl)-9H-carbazole in two steps as shown in
Scheme 1. The crude reaction mixture of free base porphyrins
was passed through a silica gel column and treated with zinc
acetate in a mixture of chloroform and methanol (2:1). After
neutral alumina column chromatography, zinc porphyrins were

characterized by 1H NMR, 13C NMR, and HRMS (Figures
S1−S12).
The absorption and emission studies of zinc porphyrins were

carried out in toluene, and photophysical data are summarized
in Tables S1 and S2. The comparative absorption and emission
spectra are shown in the Figure S13. The zinc porphyrins
exhibited one high energy Soret band and two lower energy Q
bands, arising from the first excited state and vibrational
overtones, respectively. The Soret band appeared around 429−
435 nm, followed by Q bands in between 551 and 597 nm.
The Soret bands of zinc porphyrins have molar absorption
coefficients in the range 448,000−597,000 M−1 cm−1. A
bathochromic shift is noticed upon changing the number of
meso-N-butylcarbazolyl groups; this could be due to the shift of
electron density from the carbazole rings to the porphyrin core.
Also, the TD-DFT studies showed intramolecular charge
transfer (ICT) from the meso-carbazole rings to the porphyrin
core, which can be seen in HOMO−LUMO orbitals diagram
of porphyrins P1−P4 (Figures S93, S94). As compared to zinc
tetraphenylporphyrin (ZnTPP), the Soret and Q-bands of P4
porphyrin were red-shifted by 13 and 9 nm, respectively.29 The
zinc porphyrins P1−P4 typically exhibited two emission bands
with vibronic structures around 600−653 nm. The first and
second emission bands of P4 porphyrin showed red shifts of 16
and 8 nm, respectively with respect to those of ZnTPP.29 The
fluorescence quantum yields of porphyrins P1−P4 were
around 4% to 5%. The time-resolved fluorescence studies
revealed the singlet state lifetime of P1−P4 in between 1.5 and
2.2 ns (Figure S14, Table S1). The emission quantum yields
and lifetime data are comparable with those of the standard
ZnTPP.
For calculation of the excited state redox potential

porphyrins P1−P4, the cyclic voltammetry studies were
carried out in dry dichloromethane (Figures S15−S17).
Porphyrins P1−P4 showed typical reversible two-electron
oxidation and reduction processes.30 The redox potentials of
porphyrins P1−P4 were compared with ZnTPP (Table 1).31

Due to the presence of the electron donor group at meso-
positions, porphyrins P1−P4 were easily oxidized at lower
potentials. For porphyrins P1 and P4, the first oxidation
potentials were anodically shifted by 0.06 and 0.2 V compared
to ZnTPP (Figures S15−S16). The reduction potentials of
P1−P4 were shifted to more negative values, indicating that
these porphyrins are difficult to reduce than ZnTPP (Figure
S17). These porphyrins P1−P4 with red-shifted emission
bands, enhanced emission quantum yields, and lower oxidation
potentials can be very good photoredox catalysts for organic
reactions.
With this consideration, porphyrins P1−P4 were screened

for the C−H arylation reactions of heteroarenes. C−H bond
arylation of heteroarenes with aryl diazonium salts was
performed in the presence of a porphyrin catalyst under blue

Scheme 1. Synthesis of Free Base Porphyrins and Their
Zinc Complexesa

a(a) TFA, DCM, 5 h, followed by DDQ, 1 h, rt; (b) Zn(OAc)2,
MeOH:CHCl3 (1:2), reflux.

Table 1. CV Data of Compounds Recorded in DCM

E1/2(ox)/V vs SCE E1/2(red)/V vs SCE

Porphyrin I II I II

ZnTPP 0.80 1.09 −1.25 −1.65
P1 0.74 1.03 −1.62 −1.82
P2 0.69 0.98 −1.64 −1.83
P3 0.66 0.94 −1.66 −1.85
P4 0.60 0.86 −1.68 −1.88
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light irradiation. Initially, different conditions were examined
by choosing solvent, wavelength, catalyst, and catalyst loading
at room temperature. During the primary studies, 4-bromoani-
line and furan with P4 as a photocatalyst was taken to check
the impact of different solvents on product yields (Table S3).
The reaction did not proceed in methanol and acetone
solvents. In the case of ethanol, ethyl acetate, nitromethane,
and dimethyl formamide, product yields were very poor. The
mixture of dimethyl sulfoxide and acetonitrile afforded a better
yield of the product, as compared to only acetonitrile or
dimethyl sulfoxide (Table S3). To optimize the reaction
conditions further, 4-nitrobenzenediazonium tetrafluoroborate
and furan were used under blue light irradiation. Among all
zinc porphyrins, P4 assured product formation with maximum
yields (Table 2, entries 1−4). Irradiation of the reaction

mixture with white light resulted in low product yield (Table 2,
entry 5). The reaction was performed with 0.1 to 0.75 mol %
catalyst loading of P4, and the best yield was observed with 0.5
mol % of catalyst. As diazonium salts are very unstable and
expensive, a test reaction was conducted to generate diazonium
salt in situ using tert-butyl nitrite (Table 2, entry 9). No change
in product yield was observed when diazonium salt was
generated in situ, so for the remaining reactions, substituted
anilines were taken as substrates.
Control experiments were performed by using diazonium

salt, and only traces of the product were produced when
reactions were performed without light or a catalyst. With the
optimized conditions, other heteroarenes such as thiophene
and N-Boc pyrrole were also explored for C−H arylation using
blue light (Scheme 2). In the case of thiophene and N-Boc
pyrrole, products were obtained in moderate to good yields.
Arylation of heteroarenes was possible with both electron-rich
and electron-deficient anilines. Different ortho-, meta-, and
para-substituted anilines were tested for the C−H arylation. As
per the previous report the diazonium salts having electron-
withdrawing groups gave better product yields, than the
electron-rich diazonium salts.32 No such trend is observed in
the reactions catalyzed by zinc porphyrin P4 reported in this
work. Porphyrin P4 successfully tolerated a variety of anilines
containing different functional groups such as bromo, nitro,
chloro, iodo, cyano, etc. Furthermore, the reaction of 2-methyl

furan with substituted anilines were performed, and observed
yields were between 9% and 33% (Scheme S1).
The density-functional theory (DFT) studies were carried

out for porphyrins P1−P4 (Figures S89−S92), and the
optimized geometries displayed perpendicular orientations of
the meso-naphthyl and meso-N-butylcarbazole rings with
respect to the porphyrin plane. Time-dependent density-
functional theory (TD-DFT) studies provided good agreement
of the calculated absorption maxima with the observed Soret
bands of the porphyrins (Table S4). The energy gap between
the HOMO and LUMO of porphyrins P1−P4 was found to be
in the range 2.76 to 2.86 eV (Figures S93−S94). In the case of
P4 (Figure S94), it was observed that major transitions are
taking place from HOMO−1 → LUMO and HOMO−5 →
LUMO+1 with the maximum oscillatory strength of 0.44 and
0.35. It is challenging to demonstrate experimentally whether
the electron transfer happens from the ground or the excited
state. Furthermore, it is impossible to foresee whether a
transition will occur from the singlet or triplet state.
Theoretical results based on the calculated redox potentials
and ΔG values indicated SET from the singlet excited state of
P4 to the aryl diazonium salts.33

The reaction profile diagram (RPD) is used to explain SET
and reaction mechanism (Figure 1). A proposed mechanism
for C−H arylation of heteroarenes includes five steps. Initially,
the diazonium salt is formed from aniline, and the P4
porphyrin catalyst became excited by light irradiation. In the
next step, single electron is transferred from the porphyrin ring
to the diazonium salt, and a phenyl radical is generated, which
is an energetically highly unfavorable process.
Further, a radical intermediate is produced by the addition

of a phenyl radical and heteroarene. This radical is transformed
into a carbocation intermediate by electron transfer to the
porphyrin cation, which involves only a small amount of
energy. In the final step, the product is formed, which is highly
favorable (Figure 1). The free radical mechanism of C−H
arylation of aryl diazonium salts is well documented.34,35 When

Table 2. Optimization of Reaction Conditionsa

Entry Catalyst Light source Catalyst loading (mol %) Yieldb (%)

1 P1 Blue 0.5 68
2 P2 Blue 0.5 62
3 P3 Blue 0.5 67
4 P4 Blue 0.5 70
5 P4 White 0.5 55
6 P4 Blue 0.75 56
7 P4 Blue 0.25 66
8 P4 Blue 0.1 63
9c P4 Blue 0.5 71

aReaction conditions: 4-nitrobenzenediazonium tetrafluoroborate
(0.30 mmol), furan (3.0 mmol), irradiation with light (24 W) for
30 min under N2 atm at rt. bIsolated yields after purification. c4-
Nitroaniline (0.30 mmol), furan (3.0 mmol), tBuONO (0.45 mmol).

Scheme 2. Scope of Arylation of Heteroarenes with
Substituted Anilinesa

aReaction conditions: aniline (0.3 mmol), heteroarene (3 mmol
furan, 1.5 mmol thiophene or 0.6 mmol N-Boc pyrrole), tBuONO
(0.45 mmol) irradiation with light (24 W) for 30 min under N2 atm at
rt.
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TEMPO was added into the reaction of furan with nitro
diazonium salt in the presence of P4, no product was observed
as shown in Scheme 3. And HRMS mass was observed for the
corresponding adduct (Figure S88), supporting the radical
pathway.

For the P4 porphyrin the ground state redox potential values
are −0.96 and −1.34 V (Table S5) for the formation of cation
and anion, respectively. The negative values reflect that the P4
porphyrin has a lower tendency to undergo the electron
transfer process in the ground state. The DFT calculated
excited state redox potentials of P4 in the singlet state are 1.15
and 0.77 V for the cation and anion, respectively. This
indicated that the porphyrin can act as a better electron donor
and acceptor in the excited state. The DFT estimated redox
potentials for the cation formation from the singlet and triplet
states are 1.15 and 0.21 V, respectively, which resulted in
prominent electron transfer from the singlet state of P4 to the
aryl diazonium salt. The charge distribution over the zinc
porphyrin P4 is seen with the help of the Electron Density
Difference (EDD) plot as shown in Figure S95. The cyan
region of the plot showed the electron-dense area, while the
purple region represented the electron-deficient part of the
molecule. An EDD plot displayed the change in electron
density of porphyrin from the excited state to the cationic form
and supported SET from the catalyst P4.
In summary, four zinc porphyrins were synthesized and

characterized by NMR and HRMS. An environment-friendly
and sustainable approach for C−H arylation of heteroarenes
was developed. The diazonium salts were generated in situ, and
the same procedure persisted for many substrates. In addition
to furan, thiophene and N-Boc pyrrole were also tested for

arylation reactions under blue light. Good agreement is
observed between the experimental and DFT-calculated
results. DFT studies suggested that an electron is transferred
from the singlet excited state. Additionally, the DFT calculated
redox potential values for P4 catalyst are similar to the
experimental results. This work opens the door for the organic
transformations catalyzed by porphyrin based photoredox
systems. Porphyrin based photocatalysts are economical,
efficient, and robust alternatives to the pH sensitive organic
dyes or heavy metal-based catalysts.

■ EXPERIMENTAL SECTION
General Synthesis of Porphyrins. 9-Butyl-3-(di(1H-pyrrol-2-

yl)methyl)-9H-carbazole has been synthesized as per literature
reports.36 In a 100 mL round-bottom flask, 9-butyl-3-(di(1H-pyrrol-
2-yl)methyl)-9H-carbazole (513 mg, 1.4 mmol, 1.5 equiv) and α-
naphthaldehyde (150 mg, 0.96 mmol, 1 equiv) were dissolved in 35
mL of dry DCM under N2 atmosphere at room temperature.
Trifluoroacetic acid (44 μL, 0.57 mmol, 0.6 equiv) was added after 5
min, and the reaction mixture was left under continuous stirring in the
dark. After 5 h, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ,
653 mg, 2.88 mmol, 3 equiv) was added, and the reaction mixture was
left for another 1 h in the open air. Four porphyrin-like spots were
observed on TLC, and for confirmation, UV-spectra were recorded.
TEA (triethylamine, 50 μL) was added, and then silica gel column
chromatography was performed to remove excess DDQ. A freebase
porphyrins mixture was dissolved in CHCl3, and a Zn(OAc)2 solution
(10 equiv. dissolved in methanol) was added. The reaction was
refluxed using an oil bath at 80 °C for 12−15 h. The reaction was
monitored by TLC and UV−visible spectroscopy. The appearance of
green color on silica TLC indicated the formation of zinc porphyrins.
Zinc porphyrins were purified by neutral alumina column
chromatography using DCM/hexane as a mobile phase.
Porphyrin P1.Magenta solid, mp > 250 °C. Yield 5% (33 mg). Rf =

0.7 (DCM/Hexane 3:7). IR (neat cm−1): 3052, 2955, 2919, 2858,
1656, 1589, 1492, 1340, 1207. 1H NMR (500 MHz, Chloroform-d): δ
(in ppm) 8.94−8.89 (m, 3H), 8.67−8.64 (m, 2H), 8.58−8.54 (m,
4H), 8.31−8.23 (m, 7H), 8.12−8.09 (m, 4H), 7.86−7.80 (m, 3H),
7.70 (d, J = 8, 1H), 7.55 (t, J = 8.5, 2H), 7.46 (t, J = 7.5, 3H), 7.23−
7.11 (m, 7H), 4.54 (t, J = 7 Hz, 2H), 2.11−2.05 (m, 2H), 1.62 (m,
2H), 1.07 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (125 MHz,
Chloroform-d): δ (in ppm) 151.08, 151.03, 150.9, 150.79, 150.74,
141.2, 140.07, 140.01, 136.88, 136.80, 133.2, 132.8, 132.7, 132.5,
132.4, 132.1, 132.0, 131.9, 131.6, 128.8, 128.3, 127.7, 126.0, 125.8,
124.1, 122.8, 122.6, 121.3, 120.6, 119.0, 118.6, 118.0, 108.9, 106.4,
43.2, 31.3, 20.7, 14.0. HRMS [ESI]: C66H46N5Zn+ [M + H]+: calcd
m/z 972.3039, found 972.3034.
Porphyrin P2. Magenta solid, mp > 250 °C. Yield 16% (172 mg).

Rf = 0.6 (DCM/Hexane 3:7). IR (neat cm−1): 3046, 2955, 2913,
2846, 1583, 1468, 1334, 1207. 1H NMR (500 MHz, Chloroform-d): δ
(in ppm) 8.99 (s, 1H), 8.91−8.88 (m, 5H), 8.67−8.63 (m, 3H), 8.56
(s, 1H), 8.36−8.24 (m, 6H), 8.16−8.10 (m, 4H), 7.88−7.82 (m, 2H),
7.70 (t, J = 8.5 Hz, 2H), 7.5 (m, 4H), 7.46 (t, J = 7 Hz, 2H), 7.29−
7.26 (m, 1H), 7.10−7.06 (m, 5H), 4.53 (t, J = 7 Hz, 4H), 2.10−2.06
(m, 4H), 1.64−1.61 (m, 4H), 1.07 (t, J = 7.5 Hz, 6H). 13C{1H}
NMR (125 MHz, Chloroform-d): δ (in ppm) 151.0, 150.7, 141.3,
140.2, 140.0, 136.9, 136.8, 133.3, 132.8, 132.7, 132.5, 132.4, 132.2,
131.9, 131.8, 131.6, 131.5, 128.8, 128.3, 127.7, 126.3, 126.0, 125.8,
125.5, 124.1, 123.3, 122.8, 122.5, 121.3, 120.6, 119.0, 118.5, 118.2,
108.9, 106.4, 43.2, 31.4, 20.7, 14.0. HRMS [ESI]: C72H55N6Zn+ [M +
H]+: calcd m/z 1067.3774, found 1067.3766.
Porphyrin P3. Magenta solid, mp > 250 °C. Yield 9% (109 mg). Rf

= 0.4 (DCM/Hexane 3:7). IR (neat cm−1): 3046, 2955, 2931, 2858,
1602, 1462, 1334, 1213. 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 8.99−8.91 (m, 10H), 8.66 (m, 2H), 8.37−8.12 (m, 11H), 7.86
(t, J = 8.5 Hz, 1H), 7.72 (t, J = 9.5 Hz, 3H), 7.56−7.45 (m, 8H), 7.10
(s, 1H), 4.54 (t, J = 7.5 Hz, 6H), 2.12−2.06 (m, 6H), 1.64−1.58 (m,
6H), 1.08 (t, J = 7 Hz, 9H). 13C{1H} NMR (125 MHz, Chloroform-

Figure 1. (a) Latimer diagram used to predict the excited-state redox
potentials; (b) Plausible mechanism of reaction; (c) Computed
reaction profile for C−H arylation of heteroarenes. (P4) ground state
of catalyst. (P4)* excited state of catalyst. (P4)+ catalyst after SET.

Scheme 3. Experiment with TEMPO to Check the Radical
Species
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d): δ (in ppm) 151.1, 150.9, 150.8, 141.2, 140.3, 139.9, 136.9, 133.4,
132.8, 132.5, 132.4, 132.2, 132.1, 131.5, 128.9, 128.3, 127.7, 126.3,
126.0, 125.8, 125.5, 124.1, 122.9, 122.5, 122.0, 121.3, 120.6, 119.0,
117.9, 108.9, 106.4, 43.2, 31.4, 20.8, 14.0. HRMS [ESI]:
C78H63N7Zn+ [M]+: calcd m/z 1161.4431, found 1161.4434.
Porphyrin P4.Magenta solid, mp > 250 °C. Yield 6% (53 mg). Rf =

0.3 (DCM/Hexane 3:7). IR (neat cm−1): 3046, 2955, 2919, 2846,
1595, 1468, 1330, 1213. 1H NMR (500 MHz, dimethyl sulfoxide-d6):
δ (in ppm) 8.97 (s, 2H), 8.94 (s, 2H), 8.81 (s, 8H), 8.34−8.28 (m,
8H), 7.96 (t, J = 8 Hz, 4H), 7.76 (d, J = 8.5 Hz, 4H), 7.54 (t, J = 7.5
Hz, 4H), 7.23 (t, J = 7.5 Hz, 4H), 4.63 (t, J = 6.5 Hz, 8H), 2.05−1.95
(m, 8H), 1.55−1.51 (m, 8H), 1.02 (t, J = 7 Hz, 12H). 13C{1H} NMR
(125 MHz, dimethyl sulfoxide-d6): δ (in ppm) 150.5, 141.4, 139.8,
133.9, 132.7, 132.2, 126.5, 122.6, 121.6, 121.1, 119.3, 109.9, 107.4,
31.5, 29.4, 20.5, 14.3. HRMS [ESI]: C84H72N8Zn+ [M]+: calcd m/z
1256.5166, found 1256.5178.
Photoredox Reaction. The diazonium salt/aniline (0.3 mmol, 1

equiv) and heteroarene (3 mmol furan, 3 mmol 2-methylfuran, 1.5
mmol thiophene or 0.6 mmol N-Boc pyrrole) was taken in 10 mL
round-bottom borosilicate glass flask. Solvent (600 μL) and catalyst
(1.8 mg, 1.5 × 10−3 mmol, 0.5 mol %) were added to it, followed by
addition of tert-butyl nitrite. The reaction mixture was stirred at room
temperature and irradiated by Smartchem Synth Photoreactor (24 W
blue LED, 440 nm). The products were purified by silica gel column
chromatography using ethyl acetate/hexane mixture as eluent. After
column chromatography products were confirmed by 1H and 13C
NMR (Figure S18−S87).
2-(4-Bromophenyl)furan (2a).21 White solid, mp 93−95 °C. Yield

51% (34 mg). 1H NMR (500 MHz, Chloroform-d): δ (in ppm)
7.54−7.47 (m, 5H), 6.65 (d, J = 3.5 Hz, 1H), 6.47−6.46 (m, 1H),
13C{1H} NMR (125 MHz, Chloroform-d): δ (in ppm) 152.9, 142.4,
131.8, 129.8, 125.3, 121.0, 111.8, 105.5.
2-(4-Nitrophenyl)furan (2b).21 Yellow solid, mp 145−147 °C.

Yield 71% (40.5 mg). 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 8.25 (d, J = 9 Hz, 2H), 7.80 (d, J = 9 Hz, 2H), 7.57 (s, 1H),
6.88 (d, J = 3.5 Hz, 1H), 6.56−6.55 (m, 1H). 13C{1H} NMR (125
MHz, Chloroform-d): δ (in ppm) 151.7, 146.4, 144.1, 136.4, 124.3,
123.9, 112.4, 108.9.
2-(4-Iodophenyl)furan (2c).28 White solid, mp 112−114 °C. Yield

54% (44 mg). 1H NMR (500 MHz, Chloroform-d): δ (in ppm) 7.70
(d, J = 8.5 Hz, 2H), 7.47 (s, 1H), 7.40 (d, J = 9 Hz, 2H), 6.66 (d, J =
2.5 Hz, 1H), 6.47−6.46 (m, 1H). 13C{1H} NMR (125 MHz,
Chloroform-d): δ (in ppm) 153.0, 142.4, 137.7, 130.3, 125.4, 111.8,
105.6, 92.4.
2-(4-Chlorophenyl)furan (2d).21 Yellow solid, mp 72−75 °C. Yield

50% (24 mg). 1H NMR (500 MHz, Chloroform-d): δ (in ppm) 7.59
(d, J = 8.5 Hz, 2H), 7.47 (s, 1H), 7.34 (d, J = 8.5 Hz, 2H), 6.62 (d, J =
3 Hz, 1H), 6.48−6.47 (m, 1H). 13C{1H} NMR (125 MHz,
Chloroform-d): δ (in ppm) 152.9, 142.3, 132.9, 129.3, 128.8, 125.0,
111.7, 105.4.
2-(3-Chlorophenyl)furan (2e).37a Colorless viscous liquid. Yield

43% (23 mg). 1H NMR (500 MHz, Chloroform-d): δ (in ppm) 7.65
(s, 1H), 7.53 (d, J = 8 Hz, 1H), 7.47 (s, 1H), 7.29 (t, J = 8 Hz, 1H),
7.22−7.20 (m, 1H), 6.66 (d, J = 3.5 Hz, 1H), 6.48−6.47 (m, 1H).
13C{1H} NMR (125 MHz, Chloroform-d): δ (in ppm) 152.5, 142.6,
134.7, 132.5, 129.9, 127.2, 123.8, 121.8, 111.8, 106.0.
1-(4-(Furan-2-yl)phenyl)ethan-1-one (2f).37b White solid, mp

117−120 °C. Yield 42% (23.5 mg). 1H NMR (500 MHz,
Chloroform-d): δ (in ppm) 7.98 (d, J = 9 Hz, 2H), 7.74 (d, J =
8.5 Hz, 2H), 7.53 (s, 1H), 6.80 (d, J = 3.5 Hz, 1H), 6.52−6.51 (m,
1H), 2.61 (s, 3H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in
ppm) 197.4, 152.8, 143.3, 135.5, 134.9, 128.9, 123.5, 112.1, 107.4,
26.5.
4-(Furan-2-yl)benzonitrile (2g).21 White solid, mp 76−78 °C.

Yield 51% (26 mg). 1H NMR (500 MHz, Chloroform-d): δ (in ppm)
7.74 (d, J = 9 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.54 (s, 1H), 6.81 (d,
J = 3.5 Hz, 1H), 6.53−6.52 (m, 1H). 13C{1H} NMR (125 MHz,
Chloroform-d): δ (in ppm) 152.0, 143.7, 134.6, 132.6, 123.9, 118.9,
112.2, 110.3, 108.1.

2-(2,5-Dichlorophenyl)furan (2h). Colorless viscous liquid. Yield
73% (46.8 mg). 1H NMR (500 MHz, Chloroform-d): δ (in ppm)
7.86 (s, 1H), 7.52 (s, 1H), 7.35 (d, J = 8.5 Hz, 1H), 7.19−7.14 (m,
2H), 6.54−6.53 (m, 1H). 13C{1H} NMR (125 MHz, Chloroform-d):
δ (in ppm) 148.9, 142.6, 132.9, 131.8, 130.4, 128.0, 127.7, 127.4,
111.9, 111.8. HRMS [ESI]: C10H7Cl2O+ [M + H]+: calcd m/z
212.9896, found 212.9870.
2-(4-Methoxyphenyl)furan (2i).21 White solid, mp 72−75 °C.

Yield 24% (12.7 mg). 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 7.60 (d, J = 9 Hz, 2H), 7.42 (s, 1H), 6.92 (d, J = 9 Hz, 2H),
6.51 (d, J = 3.5 Hz, 1H), 6.45−6.44 (m, 1H), 3.83 (s, 3H). 13C{1H}
NMR (125 MHz, Chloroform-d): δ (in ppm) 159.0, 154.0, 141.3,
125.2, 124.0, 114.1, 111.5, 103.3, 55.3.
2-(2-Bromo-4-chlorophenyl)furan (2j).37c Colorless viscous liquid.

Yield 58% (45 mg). 1H NMR (500 MHz, Chloroform-d): δ (in ppm)
7.73 (d, J = 8.5 Hz, 1H), 7.66 (s, 1H), 7.51 (s, 1H), 7.35−7.32 (m,
1H), 7.17 (d, J = 3.5 Hz, 1H), 6.53−6.52 (m, 1H). 13C{1H} NMR
(125 MHz, Chloroform-d): δ (in ppm) 150.3, 142.4, 133.6, 133.2,
129.8, 129.3, 127.7, 119.6, 111.5, 110.9.
2-(3,4-Dichlorophenyl)furan (2k).37a Colorless viscous liquid.

Yield 28% (18 mg). 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 7.74 (s, 1H), 7.48−7.46 (m, 2H), 7.44 (s, 1H), 6.66 (d, J = 3
Hz, 1H), 6.48−6.47 (m, 1H). 13C{1H} NMR (125 MHz, Chloro-
form-d): δ (in ppm) 151.6, 142.8, 132.9, 130.9, 130.7, 130.6, 125.5.
122.9, 111.9, 106.4.
2-(4-Bromophenyl)thiophene (3a).28 Colorless viscous liquid.

Yield 31% (22.3 mg). 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 7.50−7.46 (m, 4H), 7.29 (d, J = 4 Hz, 2H), 7.09−7.07 (m,
1H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in ppm) 143.1,
133.3, 131.9, 128.1, 127.4, 125.2, 123.5, 121.2.
2-(4-Nitrophenyl)thiophene (3b).21 Yellow solid, mp 145−147 °C.

Yield 50% (31 mg). 1H NMR (500 MHz, Chloroform-d): δ (in ppm)
8.24 (d, J = 9 Hz, 2H), 7.74 (d, J = 9 Hz, 2H), 7.48−7.44 (m, 2H),
7.16−7.14 (m, 1H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in
ppm) 146.6, 141.6, 140.6, 128.7, 127.6, 126.0, 125.7, 124.4.
2-(4-Iodophenyl)thiophene (3c).37d Colorless viscous liquid. Yield

48% (41 mg). 1H NMR (500 MHz, Chloroform-d): δ (in ppm) 7.69
(d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 7.30−7.29 (m, 2H),
7.08−7.06 (m, 1H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in
ppm) 143.1, 137.9, 133.9, 128.1, 127.6, 125.3, 123.5, 92.6. HRMS
[ESI]: C10H8IS+ [M + H]+: calcd m/z 286.9386, found 286.9366.
2-(4-Chlorophenyl)thiophene (3d).37e White solid, mp 91−93 °C

Yield 44% (25.8 mg). 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 7.53 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 9 Hz, 2H), 7.29−7.28 (m,
2H), 7.08−7.07 (m, 1H). 13C{1H} NMR (125 MHz, Chloroform-d):
δ (in ppm) 143.1, 133.2, 132.9, 129.0, 128.1, 127.6, 127.1, 125.2,
123.4.
2-(3-Chlorophenyl)thiophene (3e).37f Colorless viscous liquid.

Yield 31% (18.3 mg). 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 7.59 (s, 1H), 7.49−7.47 (m, 1H), 7.37−7.30 (m, 4H), 7.09−
7.08 (m, 1H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in ppm)
142.7, 136.1, 134.7, 130.1, 128.1, 127.3, 125.8, 125.5, 124.0, 123.8.
1-(4-(Thiophen-2-yl)phenyl)ethan-1-one (3f).37b White solid, mp

125−127 °C. Yield 34% (20.7 mg). 1H NMR (500 MHz,
Chloroform-d): δ (in ppm) 7.97 (d, J = 7.5 Hz, 2H), 7.70 (d, J =
8.5 Hz, 2H), 7.43 (d, J = 3.5 Hz, 1H), 7.37 (d, J = 5 Hz, 1H), 7.13−
7.11 (m, 1H), 2.61 (s, 3H). 13C{1H} NMR (125 MHz, Chloroform-
d): δ (in ppm) 197.3, 142.9, 138.8, 135.7, 129.1, 128.3, 126.4, 125.6,
124.6, 26.6.
4-(Thiophen-2-yl)benzonitrile (3g).21 White solid, mp 105−107

°C. Yield 37% (20.6 mg). 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 7.70 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.43−7.40
(m, 2H), 7.14−7.12 (m, 1H). 13C{1H} NMR (125 MHz,
Chloroform-d): δ (in ppm) 142.0, 138.6, 132.7, 128.5, 127.0, 126.1,
125.1, 118.8, 110.5.
2-(2,5-Dichlorophenyl)thiophene (3h). Colorless viscous liquid.

Yield 57% (39.4 mg). 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 7.52(s, 1H), 7.42−7.36 (m, 3H), 7.22−7.20 (m, 1H), 7.12−
7.10 (m, 1H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in ppm)

The Journal of Organic Chemistry pubs.acs.org/joc Note

https://doi.org/10.1021/acs.joc.3c00385
J. Org. Chem. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acs.joc.3c00385/suppl_file/jo3c00385_si_001.pdf
pubs.acs.org/joc?ref=pdf
https://doi.org/10.1021/acs.joc.3c00385?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


138.7, 134.6, 132.6, 131.5, 131.0, 128.4, 128.2, 127.2, 126.2. HRMS
[ESI]: C10H7Cl2S+ [M + H]+: calcd m/z 228.9640, found 228.9641.
2-(4-Methoxyphenyl)thiophene (3i).37b Colorless viscous liquid.

Yield 25% (14.3 mg). 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 7.53 (d, J = 9 Hz, 2H), 7.21−7.19 (m, 2H), 7.06−7.04 (m,
1H), 6.91 (d, J = 8.5 Hz, 2H), 3.83 (s, 3H). 13C{1H} NMR (125
MHz, Chloroform-d): δ (in ppm) 159.1, 144.3, 127.9, 127.5, 127.4,
123.8, 122.0, 114.2, 55.3.
2-(2-Bromo-4-chlorophenyl)thiophene (3j).37c Colorless viscous

liquid. Yield 49% (40 mg). 1H NMR (500 MHz, Chloroform-d): δ (in
ppm) 7.69 (s, 1H), 7.41−7.39 (m, 2H), 7.32−7.27 (m, 2H), 7.11−
7.10 (m, 1H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in ppm)
140.5, 134.1, 133.9, 133.2, 132.5, 128.0, 127.6, 127.0, 126.4, 123.1.
tert-Butyl 2-(4-bromophenyl)-1H-pyrrole-1-carboxylate (4a).37g

Colorless viscous liquid. Yield 43% (42 mg). 1H NMR (500 MHz,
Chloroform-d): δ (in ppm) 7.37−7.36 (m, 1H), 7.33 (s, 1H), 7.27 (t,
J = 5.5 Hz, 2H), 7.23−7.21 (m, 1H), 6.22 (t, J = 3.5 Hz, 1H), 6.21−
6.20 (m, 1H), 1.37 (s, 9H). 13C{1H} NMR (125 MHz, Chloroform-
d): δ (in ppm) 149.2, 136.1, 133.37, 133.31, 129.3, 128.8, 127.2,
127.1, 123.0, 115.0, 112.9, 110.6, 83.9, 27.6.
tert-Butyl 2-(4-nitrophenyl)-1H-pyrrole-1-carboxylate (4b).21

Yellow solid, mp 134−136 °C. Yield 52% (45 mg). 1H NMR (500
MHz, Chloroform-d): δ (in ppm) 8.21 (d, J = 9 Hz, 2H), 7.51 (d, J =
9 Hz, 2H), 7.41−7.40 (m, 1H), 6.33−6.32 (m, 1H), 7.28−7.26 (t, J =
7, 1H), 1.43 (s, 9H). 13C{1H} NMR (125 MHz, Chloroform-d): δ
(in ppm) 148.9, 146.6, 140.7, 132.7, 129.5, 124.3, 122.9, 116.2, 111.1,
84.5, 27.7.
tert-Butyl 2-(4-iodophenyl)-1H-pyrrole-1-carboxylate (4c).37g

Colorless viscous liquid. Yield 31% (34 mg). 1H NMR (500 MHz,
Chloroform-d): δ (in ppm) 7.67 (d, J = 8 Hz, 2H), 7.34−7.33 (m,
1H), 7.09 (d, J = 8 Hz, 1H), 6.22−6.21 (t, J = 6.5 Hz, 1H), 6.18−6.17
(m, 1H), 1.40 (s, 9H). 13C{1H} NMR (125 MHz, Chloroform-d): δ
(in ppm) 149.1, 136.6, 133.89, 133.84, 130.9, 122.9, 114.8, 110.7,
92.7, 83.9, 27.6.
tert-Butyl 2-(4-chlorophenyl)-1H-pyrrole-1-carboxylate (4d).37g

Colorless viscous liquid. Yield 36% (30 mg). 1H NMR (500 MHz,
Chloroform-d): δ (in ppm) 7.35−7.26 (m, 5H), 6.22 (t, J = 3.5 Hz,
1H), 6.18−6.17 (m, 1H), 1.39 (s, 9H). 13C{1H} NMR (125 MHz,
Chloroform-d): δ (in ppm) 149.1, 133.7, 133.1, 132.8, 130.4, 130.0,
128.0, 127.0, 122.8, 114.7, 110.6, 83.8, 27.6.
tert-Butyl 2-(3-chlorophenyl)-1H-pyrrole-1-carboxylate (4e).37h

Yellow viscous liquid. Yield 50% (41.5 mg). 1H NMR (500 MHz,
Chloroform-d): δ (in ppm) 7.37−7.36 (m, 1H), 7.33 (s, 1H), 7.27 (d,
J = 5 Hz, 2H), 7.24−7.21 (m, 1H), 6.23−6.20 (m, 2H), 1.37 (s, 9H).
13C{1H} NMR (125 MHz, Chloroform-d): δ (in ppm) 149.2, 136.1,
133.36, 133.30, 129.3, 128.8, 127.2, 127.1, 123.0, 114.9, 110.6, 83.9,
27.6. HRMS [ESI]: C15H17ClNO2

+ [M + H]+: calcd m/z 278.0942,
found 278.0938.
tert-Butyl 2-(4-acetylphenyl)-1H-pyrrole-1-carboxylate (4f).37i

Colorless viscous liquid. Yield 30% (26 mg). 1H NMR (500 MHz,
Chloroform-d): δ (in ppm) 7.95 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 3.5
Hz, 2H), 7.38−7.37 (m, 1H), 6.27−6.24 (m, 2H), 2.61(s, 3H), 1.3 (s,
9H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in ppm) 197.7,
149.1, 139.0, 135.5, 133.9, 129.0, 127.7, 123.6, 115.5, 110.9, 84.1,
27.6, 26.4.
tert-Butyl2-(4-cyanophenyl)-1H-pyrrole-1-carboxylate (4g).21

Colorless viscous liquid. Yield 56% (45 mg). 1H NMR (500 MHz,
Chloroform-d): δ (in ppm) 8.22 (d, J = 9 Hz, 2H), 7.51 (d, J = 9 Hz,
2H), 7.41−7.40 (m, 1H), 6.33−6.32 (m, 1H), 6.28−6.26 (t, J = 3.5,
1H), 1.43 (s, 9H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in
ppm) 148.9, 146.6, 140.7, 132.7, 129.5, 124.3, 122.9, 116.5, 111.1,
84.5, 27.7.
2-Methyl-5-(4-nitrophenyl)furan (5a).37j Yellow solid, mp 128−

130 °C. Yield 18% (11 mg). 1H NMR (500 MHz, Chloroform-d): δ
(in ppm) 8.22 (d, J = 9 Hz, 2H), 7.73 (d, J = 9 Hz, 2H), 6.78 (d, J = 3
Hz, 1H), 6.15−6.14 (m, 1H), 2.41 (s, 3H). 13C{1H} NMR (125
MHz, Chloroform-d): δ (in ppm)154.6, 150.1, 136.7, 124.3, 123.2,
110.2, 108.8, 13.8.
2-(4-Iodophenyl)-5-methylfuran (5b).37k Yellow solid, mp 84−86

°C. Yield 9% (8 mg). 1H NMR (500 MHz, Chloroform-d): δ (in

ppm) 7.66 (d, J = 9 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 6.55 (d, J = 3
Hz, 1H), 6.05 (t, J = 3 Hz, 1H), 2.35 (s, 3H). 13C{1H} NMR (125
MHz, Chloroform-d): δ (in ppm) 152.4, 151.2, 137.6, 130.6, 124.9,
107.9, 106.6, 91.5, 13.7.
1-(4-(5-Methylfuran-2-yl)phenyl)ethan-1-one (5c).37j Yellow

solid, mp 112−114 °C. Yield 27% (16.2 mg). 1H NMR (500 MHz,
Chloroform-d): δ (in ppm) 7.95 (d, J = 8 Hz, 2H), 7.69 (d, J = 9 Hz,
2H), 6.70 (d, J = 3 Hz, 1H), 6.11−6.10 (m, 1H), 2.60 (s, 3H), 2.39
(s, 3H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in ppm)
197.4, 153.5, 151.1, 135.2, 135.0, 128.9, 122.9, 108.6, 108.3, 26.5,
13.8.
4-(5-Methylfuran-2-yl)benzonitrile (5d).37j Yellow solid, mp 110−

112 °C. Yield 33% (18 mg). 1H NMR (500 MHz, Chloroform-d): δ
(in ppm) 7.68 (d, J = 8.5 Hz, 2H), 7.62 (d, J = 8.5 Hz, 2H), 6.70 (d, J
= 3.5 Hz, 1H), 6.12−6.11 (m, 1H) 2.39 (s, 3H). 13C{1H} NMR (125
MHz, Chloroform-d): δ (in ppm) 154.0, 150.3, 134.9, 132.5, 123.3,
119.1, 109.5, 109.3, 108.5, 13.8.
2-(2-Bromo-4-chlorophenyl)-5-methylfuran (5e).37c White solid,

mp 61−63 °C. Yield 23% (19 mg). 1H NMR (500 MHz, Chloroform-
d): δ (in ppm) 7.72 (d, J = 8.5 Hz, 1H), 7.49 (d, J = 2 Hz, 1H), 7.31−
7.29 (m, 1H), 7.09 (d, J = 3 Hz, 1H), 6.119−6.112 (m, 1H), 2.36 (s,
3H). 13C{1H} NMR (125 MHz, Chloroform-d): δ (in ppm) 152.5,
148.6, 133.5, 132.5, 129.9, 128.7, 127.6, 119.0, 112.1, 107.8, 13.6.
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