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ABSTRACT: We developed a deep potential machine learning model for simulations of chemical reactions in molten alkali
carbonate-hydroxide electrolyte containing dissolved CO2, using an active learning procedure. We tested the deep neural network
(DNN) potential and training procedure against reaction kinetics, chemical composition, and diffusion coefficients obtained from
density functional theory (DFT) molecular dynamics calculations. The DNN potential was found to match DFT results for the
structural, transport, and short-time chemical reactions in the melt. Using the DNN potential, we extended the time scales of
observation to 2 ns in systems containing thousands of atoms, while preserving quantum chemical accuracy. This allowed us to reach
chemical equilibrium with respect to several chemical species in the melt. The approach can be generalized for a broad spectrum of
chemically reactive systems.

1. INTRODUCTION
Molten carbonate salts are a relatively extended class of
molecular ionic compounds that are receiving increasing
attention in fundamental and applied fields. They are
considered in the development of technological devices (e.g.,
fuel cells)1−3 as well as for providing an improved under-
standing of geochemical processes (e.g., the role of carbonate
melts in the geodynamics of the Earth’s mantle).4,5 Their high
ionic conductivity, low viscosity, chemical stability, and low
environmental impact make molten carbonates essential in
high-temperature technology, with applications in heat trans-
port and thermal energy storage. Perhaps the most promising
set of potential applications are molten carbonate fuel cells
(MCFCs)1 and high capacity rechargeable batteries.6 In
MCFCs, power generation is coupled with CO2 capture
which enhances the efficiency and environmental appeal of
these devices. As the solvent, the electrolyte helps stabilize
intermediates for the electrochemical reactions taking place in
MCFCs. The electrolyte consists of a mixture of Li+/K+ or Li+/
Na+ carbonates near the eutectic composition, and the cathode
feed gas contains CO2, H2O, and O2. As a result of chemical
reactions between carbonate and dissolved species, the high-
temperature ionic melt consists of additional molecular or
ionic moieties7,8 besides the dominant carbonate ions.
Previous studies9−11 have confirmed the presence of significant
concentrations of hydroxide ions, which can affect the carbon

capture efficiency of fuel cells as well as cause electrolyte
loss.12,13

As a result of high operating temperatures (above 600 °C) of
molten carbonate fuel cells, direct characterization of the
electrolyte structure and properties is experimentally challeng-
ing, requiring special instruments usually adapted to the
measurement of a single observable. Computational ap-
proaches can potentially overcome these issues and be used
for reliable predictions of the physicochemical properties of
molten salts. However, representing the potential energy
surfaces of molten salts poses interesting challenges consider-
ing the complexities in modeling atomic/molecular structures,
multiple phases, and transformations that can significantly
influence the salt properties.14 In the past few decades, several
classical interatomic potentials have been employed in
modeling molecular simulations of molten carbonates, where
such potentials have been developed using ab initio force-fitting
methods.15−22 Assumptions about the relevant interactions and
an explicit definition of the potential energy functional form
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are often essential. Although classical models have been
successfully applied to compute thermodynamic and transport
properties of pure and mixtures of salts,23 these potentials are
subject to limitations of accuracy and transferability.
Furthermore, most classical force fields cannot capture effects
such as charge transfer, speciation, and chemical reactivity. An
attractive alternative to this approach is ab initio molecular
dynamics (AIMD), where forces acting on the atoms are
computed using an explicit description of the electrons via
quantum chemistry methods, e.g., density functional theory
(DFT). AIMD simulations are thus free of potential para-
metrization and offer the advantage of transferability and
describing chemistry, specifically bond breaking and forming.
For example, by employing AIMD simulations, Corradini et al.
reported the behavior of CO2 in molten CaCO3 where they
observed the formation of a pyrocarbonate anion via a
spontaneous reaction between CO2 and a carbonate anion.

24

Recently, we investigated an MCFC electrolyte consisting of
CO2 and molten carbonate-hydroxide via an AIMD
approach.25 We observed formation of several ionic species,
including pyrocarbonate, bicarbonate, etc., primarily driven by
the gas-phase concentrations of CO2, H2O, and O2.

7,8 Our
results demonstrated the presence of water at concentrations
double or more than that of CO2. However, AIMD simulations
are computationally expensive and are limited with respect to
both system size (a few hundred atoms) and time scales
(picoseconds). Therefore, many practically and physically
relevant properties of molten carbonates, such as the
diffusivity, viscosity, ionic conductivity, and equilibrium
composition of a reactive mixture, cannot be computed
accurately.
In addressing the trade-off between accuracy and computa-

tional expense, machine learning (ML)-based potentials are a
promising solution for development of next-generation
molecular simulation force fields.26,27 Among the most
common approaches are high-dimensional neural networks
(NNs)26,28−36 and kernel-based methods27,37−40 trained on
potential energy surfaces generated from accurate quantum
chemical methods such as DFT. Most recently, the
introduction of equivariant NNs41−44 has led to highly data-
efficient methods of potential training. The great advantage of
ML-based potentials is their ability to combine the efficiency
comparable to that of classical force fields and the accuracy of
high-level ab initio methods. The past decade has seen a
significant rise in the development of ML potentials, covering a
broad spectrum of applications.28−35,45 Jackson and co-workers
developed an automated workflow to obtain ML potentials for
molten salts and applied the derived potential to examine the
structural and dynamic properties of molten LiCl.46 Li et al.47

and Tovey et al.48 have also developed neural network
potentials for molten NaCl that account for many-body
polarization. Lam et al.49,50 have demonstrated the efficiency of
atom-centered neural network interaction potentials in
predicting the thermodynamic and transport properties of
LiF and FLiBe molten salts. A comparative study of the
structural and transport properties of a prototypical molten
salt, LiF-NaF-KF (FLiNaK), using machine-learned NN
potential and a reparametrized classical force field was reported
by Lee et al.51 They showed the ability of the former potential
to predict structural and dynamic properties of the molten salt
with quantum chemical accuracy and computational efficiency
of classical force fields. Nguyen et al.52 have also adopted an

ML approach to study the thermophysical properties of
actinide molten salts.
Despite these successes, the major obstacle in applying ML

potentials to the broader chemical space of molten salts,
including molten carbonate and hydroxides, is the difficulty of
potential parametrization. In ML potential development, there
must be a balance between the computational cost of training
set generation with the need to sample diverse atomic
configurations in order to optimize ML parameters to obtain
models of adequate predictive accuracy and transferability. To
the best of our knowledge, except for the very recent report by
Feng et al.,53 no other study is reported in the literature
devoted to developing ML-based models for molten
carbonates and hydroxides. In ref 53, an ML-based model
was employed to investigate the local structure and transport
properties of molten [n = 0.4, 0.5, 0.6] binary
salts. Chemical reactions involving CO2 in the electrolyte melt
were not investigated; these reactions are the main focus of our
present work.
Specifically, we aim to construct and apply an ML-based

model to study chemical reactions and characterize the
formation/dissociation of different chemical species in a
molten electrolyte containing dissolved
CO2. In addition, our goal in this work is to investigate the
physicochemical properties of molten carbonates, hydroxides,
and their mixtures. Toward this purpose, we trained a potential
using the Deep Potential Molecular Dynamics (DPMD)54

method which relies on deep neural networks (DNNs) to fit
and evaluate high dimensional potential energy surfaces.
DPMD simulations have been performed to model millions
of atoms on time scales of tens of nanoseconds55 and were
successfully applied to study liquid−liquid phase transition in
supercooled water,56 chemical reactions at the interface of
water and TiO2,

57 gas-phase reactive systems,58 in modeling
metallic systems,33 etc. with an accuracy matching to that of
underlying ab initio models. The accuracy and transferability of
DPMD models have been improved by including the Deep
Potential GENerator (DP-GEN) scheme.59 This approach
involves an active learning algorithm to generate models and
aims to reduce the overall computational cost for data
generation and model training.
The article is organized as follows: In Section 2, we discuss

the model development and assessment methods. The analyses
of model training errors, results obtained, and overall
performance of the potential in predicting thermodynamic
properties are presented in Section 3. The last section provides
a summary of the work.

2. METHODS
2.1. Ab Initio Data Set Generation. Training a robust

DNN model capable of capturing a range of local atomic
environments requires a data set that sufficiently covers the
breadth of configurations that may manifest during finite-
temperature MD simulations. As such, data for molten

electrolyte containing dissolved CO2
configurations were acquired from previously obtained
AIMD data with simulation details as described in ref 25.
Briefly, the first-principles calculations were performed at the
DFT level60,61 as implemented in the CP2K simulation
program62 using the Quickstep module.63 Exchange-correla-
tion potentials were treated within the generalized gradient
approximation (GGA) employing the Perdew−Burke−Ernzer-
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hof (PBE) functional.64 The GGA formalism has been shown
to yield reasonably accurate results for physicochemical
properties of molten salts.46−52 A double-ζ valence plus
polarization (DZVP) basis set was adopted to expand the wave
functions. The energy cutoff was set to 400 Ry for the auxiliary
plane wave expansion of the charge density. Valence electrons
were modeled explicitly, whereas core electrons have been
treated with norm-conserving Goedecker−Teter−Hutter
(GTH) pseudopotentials65,66 with 1, 3, 4, 6, and 9 valence
electrons for H, Li, C, O, and K, respectively. Dispersive
interaction corrections were included by utilizing the empirical
dispersion correction (D3) from Grimme,67 with a cutoff of 40
Å. Born−Oppenheimer MD simulations were performed with
a time step of 0.5 fs to integrate the equations of motion. The
initial system was equilibrated for 8 ps in the isothermal−
isobaric (NpT) ensemble at 1 bar using an isotropic unit cell
according to the scheme of Martyna et al.,68 with a barostat
time constant of 250 fs. The simulation cell size after the NpT
equilibration was 21.773 Å. Equilibration was followed by a
production period of 65 ps in the canonical (NVT) ensemble.
We set the temperature at 923.15 K, controlled by a chain of
six Nose−́Hoover thermostats69 with a time constant of 100 fs.
Three-dimensional periodic boundary conditions were em-
ployed in all simulations. We extracted ∼6000 configurations
of the electrolyte containing dissolved CO2
from the AIMD trajectory where each configuration consisted
of 630 atoms [120 Li+, 80 K+, 80 CO32−, 40 OH−, and 10 CO2].
2.2. Deep Neural Network Model Development. We

employed the DP-GEN active machine learning approach of
Zhang et al.59 to construct a DNN model for our system. The
procedure consists of multiple iterations as displayed in Figure
1 and is summarized as follows.
Step 0: Preparing Initial Training Data. The AIMD-

generated configurations were subjected to single point
energy/force calculations within the DFT framework at the
same level of theory as described above. The gradients on the
wave functions were optimized with convergence criteria of

10−6 a.u. Because of the large supercells, the integration of the
Brillouin zone was performed with a reciprocal space mesh
consisting of only the gamma point. The energy E and force Fi
on each atom i together with the atomic positions and box
dimension of these snapshots were used as the initial training
data.
Step 1: Training. We employed the DeepMD-kit package70

to train four independent DNN models based on the same
input training data, but different random seeds were utilized in
initialization of the neural network parameters. In the DPMD
approach, for every snapshot in the training set, a local
coordinate frame is set up for each atom i with respect to its
neighbors within a cutoff distance rc. In this work, rc was set to
6 Å. This treatment accounts for the preservation of
translational and rotational symmetries.70 Summation over all
possible permutations of atoms of the same type was
performed to preserve the permutational invariance. These
representations were fed to a DNN as inputs to yield atomic
energies Ei for each atom i, so that the total potential energy of
a given configuration is E = ∑iEi.

70 Atomic forces Fi were
computed from the gradient of the system energy. Then,
parameters of the DNN model were optimized by minimizing
the loss function L, defined as a sum of squared errors
normalized by the number of atoms,

(1)

where ΔE2 and ΔFi
2 represent the squared errors of system

energy and atomic component-wise force, respectively,
between the training data and the current DPMD prediction,
and N is the number of atoms. To optimize the training
efficiency, the terms of the loss function in eq 1 were weighted
with prefactors pe and pf where pe was progressively increased
from 0.2 to 8, while pf was progressively decreased from 1000
to 1. The number of training steps was set to 1.5 × 106.
Throughout the training, we employed three layers of NN,
where each layer consisted of 240 neurons.

Figure 1. Flowchart of the training procedure of the DNN model using the active learning approach.
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Step 2: Exploring. To systematically improve the DNN
model, additional training data was collected via iterative
exploration of configurational space with short DPMD
simulations at different thermodynamic conditions. These
simulations were performed in the NpT ensemble considering
a range of initial configurations. Molten
electrolyte containing dissolved CO2 was simulated at a
pressure of 1 bar and temperatures T = 850, 900, 925, 950,
975, and 1225 K. The pure carbonate systems, Li2CO3 and
K2CO3, were simulated at 1 bar and T = 1025 and 1200 K,
whereas pure hydroxide systems, LiOH and KOH, were
simulated at 1 bar and T ranging from 825 to 1075 K with an
interval of 50 K. In these simulations, all the trajectories were
propagated using one of the DNN models randomly selected
from the four models produced in Step 1, while the force
acting on each atom at each time step was evaluated by
employing all four models. The metric for convergence was the
maximum standard deviation of the predicted atomic forces,

calculated as for each snapshot,
where is the average force on atom i predicted by
the four different DNN models.
Step 3: Labeling. The snapshots that had ζ > 0.1 eV/Å were

extracted. The energy E and force Fi on each atom i of these
snapshots were evaluated within the DFT framework and
added to the training data set. Steps 1 through 3 were then
repeated until the configurations that had ζ > 0.1 eV/Å
accounted for less than 0.007% of the total configurations. At
the end of the DP-GEN process consisting of 28 iterations, our
training data set contained 15 840 structures, spanning a
temperature range of 825−1225 K.
2.2.1. Targeted Learning. We employed the DNN model

generated at the end of the DP-GEN active learning exercise to
perform DPMD simulations using the LAMMPS program.71 A
detailed description of such simulations is described in the
following subsection. Specifically, we considered molten

electrolyte containing dissolved CO2, an
identical system as discussed in Section 2.1. However, we
observed some nonphysical results upon analyzing the
trajectories. We observed a discrepancy between the AIMD
and DPMD predictions in the percentage of C−O covalent
bond retained in CO2 molecules. All CO2 molecules are found
to be intact throughout the AIMD trajectory. In contrast,
almost 4% of the C−O covalent bonds in CO2 molecules were
broken within 80 ps in the DPMD simulations using a DNN
model generated at the end of the DP-GEN active learning
cycle. This suggests a shortcoming of the initially trained DNN

potential in accurately capturing the underlying chemistry of
the system as observed in the reference AIMD simulations.
The observed discrepancy is attributed to the inability of the
active learning procedure to access configurations representa-
tive of the C−O bond-breaking process. On the infrequent
occasions of breaking C−O bonds in the AIMD simulations,
this is a fast process occurring on a time scale of ∼20 fs.
Therefore, it is difficult for our active learning process, which
samples configurations every 0.1 ps, to capture snapshots of
this very fast, rare process. The bond-breaking reaction
coordinate is not sampled comprehensively. As a result, our
model is trained on mostly intact CO2 and fails to capture the
accurate time scale, frequency, and energetic barriers of C−O
bond breaking. The original model seems to underestimate the
barriers of C−O bond breaking.
In order to address this deficiency in the original trained

model, we performed another round of training with additional
configurations (not obtained from active learning) where we
manually fixed C−O bonds over a range of distances to
systematically and homogeneously sample the bond dissocia-
tion pathway. In this “targeted learning” approach, we
considered all the training data sets generated via the active
learning process plus the initial training data. Specifically, we
took a system identical to the AIMD simulation (see Section
2.1) consisting of 630 atoms, including 10 CO2 molecules.
New configurations were created by fixing the C−O bond
lengths in CO2 molecules from 1.0 to 2.0 Å, where bonds were
manually stretched in a step size of 0.2 Å. After the distances
were fixed, equilibrium MD was performed on all molecules
except for the manually fixed C−O bond of interest; this bond
length is fixed while all other molecules are equilibrated to
ensure we are sampling this bond length. The newly
constructed snapshots were equilibrated using classical
potential22 and GROMACS MD engine.72,73 These equili-
brium simulations were performed in the NpT ensemble for a
short duration of 500 ps using standard MD protocols. The
equilibrated snapshots were used to obtain energies and atomic
forces within a DFT framework employing the same
parameters as described in Section 2.1. This strategy resulted
in a total of 1350 configurations with energies and atomic
forces closely resembling the potential energy surface of CO2
dissociation and was added to the training data set. We then
retrained the model based on the updated training data set.
The number of training steps was set to 1 × 106. All other
training parameters were kept similar as described in Section
2.2. The DNN potential obtained at the end of this targeted

Figure 2. Learning curves from training the DPMD model. Left panel: system energies. Right panel: atomic forces.
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learning is the final model used for all calculations from this
point forward.
2.3. Deep Potential Molecular Dynamics Simulations.

The converged DNN potential after training was employed to
conduct DPMD simulations using the LAMMPS code71

interfaced with the DeepMD-kit.70 Specifically, the trained
DNN model was used as a pair style in LAMMPS to compute
energy and force during MD steps. We considered two
different types of systems to investigate chemical reactions in
molten electrolyte containing dissolved
CO2. Type I, a system of the same size as for the AIMD
simulations (see Section 2.1), consisted of 630 total atoms, to
validate the DNN potential by comparing against the short-
time AIMD data. In addition, we performed simulations in a
larger system (Type II), taking advantage of the linear scaling
of the DNN potential with simulation system size. This was 2.5
times the size of the Type I system, containing 1575 atoms.
For both Type I and II systems, 10 independent simulations
were performed starting from different initial configurations to
improve statistical accuracy. DPMD simulations were
performed within the NpT ensemble at 923.15 K and 1 bar.
The integration time step was set to 1.0 fs. Type I systems were
simulated for 100 ps, whereas for Type II systems, the total
simulation time was 2 ns. Periodic boundary conditions along
all three spacial dimensions were employed in the simulations.

3. RESULTS AND DISCUSSION
3.1. Training Accuracy. Figure 2 shows the learning

curves of the final DNN model, where the squared energy and
force errors are defined in eq 1. The fitting errors of the DNN
model for energies and forces are of the order of 3 × 10−7 eV
and 6 × 10−2 eV/Å, respectively, after 106 training steps. These
numbers indicate that the typical DPMD training accuracy has
been achieved.74 We observed significant improvement in
training accuracy by incorporating more data points into the
training data set as we performed more DP-GEN iterations. It
can be seen by comparing the maximum standard deviation of
the predicted atomic forces (ζ, defined in Section 2.2) by the
four different DNN models during each DP-GEN iteration. A
comparison between iteration 6 and iteration 28 is displayed in
Figure S1 of the Supporting Information (SI). In iteration 6,
the magnitude of ζ is as high as 300 eV/Å and the peak of the
distribution occurs at ζ = 20 eV/Å. In contrast, ζ values are

distributed all below 1 eV/Å, and the peak of the distribution is
0.14 eV/Å, at the end of iteration 28. Such an improvement in
the training accuracy can be attributed to the careful selection
of training data sets and demonstrates the overall efficiency of
the DP-GEN active learning process. In addition, to confirm
the absence of overfitting in the trained model, the force error
as a function of training steps is compared for both the training
set and the validation set, which comprises 20% of the whole
data set. As shown in Figure S2 of the SI, the train and
validation profiles fall on each other, confirming no overfitting.
We randomly selected 150 configurations from the DPMD

production run trajectories of Type I systems. Density
functional theory calculations were performed to obtain energy
and atomic forces for these configurations, using the same
DFT parameters as for the preparation of the DNN training
data set. Figure 3 demonstrates the comparisons of energies
and atomic forces predicted by the DNN model to those
predictions by DFT. Similar comparisons for pure Li2CO3 and
KOH systems are depicted in Figures S3 and S4 of the SI. For
both energies and forces, the DNN potential exhibits excellent
agreement with the ab initio data. Specifically, the root-mean
squared errors of the energy and atomic force predicted by the
DNN model with respect to DFT were 2.28 × 10−4 eV/atom
and 1.04 × 10−2 eV/Å, respectively. These values clearly
manifest that the trained DNN potential has achieved typical
DPMD accuracy.74 Moreover, these errors are comparable in
magnitude to the accuracy limits of DFT calculations as a
result of k-point sampling and approximations in the selection
of a finite plane-wave basis set. In the test set, the good
agreement of forces suggests that the potential energy surface
is not overfitted since the gradients are computed accurately in
the test set which was not employed in training the DNN
model.
3.2. Bond Dissociation Kinetics and Composition

Evolution. A key motivation for this work was to investigate
the ability of the DNN model to describe chemical reactions
and characterize the formation and dissociation of chemical
moieties in molten electrolyte containing
dissolved CO2. The scalability of the DNN model offers the
advantage to examine such chemical reactions on a much
longer time scale and large system sizes over the conventional
AIMD approach, which typically involves trajectories of a few
hundreds of picoseconds using moderate-size systems.25 Our

Figure 3. Forces and energies from the DFT calculations and DPMD model. Left: atomic forces. Right: potential energy per atom. Insets in both
plots are the probability distributions of the absolute difference in force and energy between the two methods.
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first step was to perform DPMD simulations starting from ten
different initial configurations for the smaller (Type I) system,
which consisted of 630 atoms. We obtained the fraction of
covalent bond retention in molecules and ions as a function of
time averaged over these 10 trajectories and compared them
against the AIMD reference data in Figure 4. As shown in

Figure 4, we observed satisfactory agreement between the
DPMD and AIMD predictions. The C−O covalent bonds in
CO2 molecules are retained fully, and all CO2 molecules are
intact throughout the 80 ps DPMD trajectory, according to the
AIMD results. This observation indicates that previous
discrepancies in the DNN potential (discussed in Section

Figure 4. DPMD prediction of covalent bond retention [%] in molecules and ions as a function of time compared against AIMD reference data for
an identical system (Type I). The employed DNN potential was trained using the potential energy cross section data representing the CO2
dissociation.

Figure 5. Number of different chemical species present as a function of time during the DPMD trajectory compared against AIMD reference data
for an identical system. Red points are the actual observed numbers in the simulation box, while the red lines are drawn to guide the eye.
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2.2.1) have been rectified through the help of targeted learning
by incorporating more training data representing the potential
energy surface of CO2 dissociation. Moreover, one of the
limiting factors of the active learning approach is the short time
scale which prevents access to events that may appear at a
longer time scale enabled by NNs. Also, there could be
circumstances where trajectories from the ab initio dynamics
are unavailable. Ideally, the reference data set should contain
diverse local atomic environments. However, traditional
methods are prone to sampling similar configurations
frequently, mainly due to the Boltzmann statistics. A solution
to overcome this barrier would be introducing a sampling
method optimized for semiautomatically collecting manifold
yet appropriate configurations. One possible approach would
be to employ enhanced sampling techniques such as
metadynamics with the descriptor for the local atomic
environment as a collective variable.75 Consequently, the
simulation is expected to be steered toward an unvisited local
environment space so that each atom explores diverse chemical
environments. In the case of OH−, the overall profile almost
reproduces the AIMD curve within the limits of the error bar.
However, there are some systematic differences in the
percentage of covalent bond retention in CO32− between
AIMD and DPMD, as seen in the left panel of Figure 4.
Despite these differences, the overall mixture composition is
represented well, as discussed in the following paragraph.
We evaluated the overall composition of the electrolyte

medium as a function of time for the small (Type I) system
over the period of time for which AIMD results are available.
We used two distance criteria of 1.8 and 1.3 Å for C−O and
H−O covalent bonds, respectively, based on their respective
radial distribution functions (RDFs), to define a molecular or
ionic entity from the MD trajectory. We used a similar
breadth-first search algorithm as described in our previous
study25 to define a chemical species based on a particular
distance criterion. Once again, DPMD predicted profiles are
averaged over ten independent trajectories and are compared
against the AIMD data in Figure 5. We observed a satisfactory
agreement between DPMD and AIMD predictions for the
numbers of molecules and ions present in the electrolyte, as
can be seen from Figure 5. It is encouraging to find such
consistency between the two approaches in the quantitative
estimations of molecule/ion counts. These results further
corroborate the significance of the DNN potential in exhibiting
accuracy and transferability similar to a DFT-level calculation,
with a much lower computational cost. Nevertheless, the

profiles displayed in Figure 5 do not reveal the equilibrium
composition of the electrolyte system, as these correspond to
short-time features present well below the 100 ps time scale.
3.3. Long-Time Behavior. We used the revised DNN

potential to perform DPMD simulations of Type II systems at
the same thermodynamic conditions, i.e., 923.15 K and 1 bar,
for a much longer time scale (2 ns). The bond dissociation
kinetics for ions and CO2 molecules was evaluated and
averaged over 10 independent starting configurations and is
shown in Figure 6. We can conclude that the bond dissociation
processes have reached equilibrium from these profiles. The
percentage C−O covalent bond retention in both CO32− and
CO2 exhibits a saturation within the 500 ps time scale. The
saturated values are 95% and 86.5% in CO32− and CO2,
respectively. In our previous AIMD study,25 we observed the
presence of dynamic equilibrium in pyrocarbonate (C2O52−)
ion formation and dissociation from a reaction between CO32−
and CO2.

(2)

Our investigation also revealed that the formation of the
C2O52− ion is a kinetically favored process. However, due to the
limitation of computational expenses, we could not reach an
equilibrium point based on the AIMD trajectory. Interestingly,
these equilibrium numbers obtained from DPMD simulations
strongly suggest that the C−O covalent bond formation/
dissociation process has stopped after 500 ps. In other words,
the dynamic equilibrium shown in eq 2 has also reached an
end point within the same time scale. This observation
confirms that the C2O52− ion is a transient species in the
system. On the other hand, the H−O covalent bond retention
percentage in OH− ions takes a longer time to reach an
equilibrium, as shown in Figure 6. As shown in the following
equations, the longer equilibration time is attributed to
complex reaction dynamics involving hydroxide ions.

(3)

(4)

(5)

In principle, OH− ions participate in all of these reactions, and
eventually, all the H−O covalent bonds originally present in
the hydroxide ions are broken within 1.5 ns, which is once
again following our previous prediction based on the AIMD
results.25 Furthermore, this observation substantiates the

Figure 6. DPMD prediction of covalent bond retention [%] in molecules and ions as a function of time for a large system (Type II). The shaded
area represents standard deviations.
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AIMD anticipated thermodynamic nature of water and
bicarbonate (HCO3−) ion formation in the electrolyte.
We analyzed the trajectories obtained from DPMD

simulations of Type II systems to investigate the equilibrium
composition of the electrolyte. The numbers of molecules and
ions present in the electrolyte were evaluated and averaged
from 10 independent trajectories and are shown in Figure 7. It
is evident from Figure 7 that within 1 ns, the system has
attained an equilibrium composition. At equilibrium, the
fraction of CO32− anion has increased from its initial
concentration primarily due to HCO3− dissociation reaction
with the OH− ion as shown in eq 4. On the other hand, the
concentration of hydroxide ions at equilibrium is reduced by
half from its starting fraction. Once again, this observation can
be justified based on the transformation of OH− ions to either
HCO3− anions or water molecules via eq 3 and eq 4. It is
interesting to find that, at 500 ps, there is no trace of CO2 in
the system�it is converted to either C2O52− or HCO3− anions
following one of the reactions between eq 2 or eq 3. These
observations involving ions and molecules present in the initial
configuration are hand in hand with our previous speculations
based on AIMD simulations.25 Next, we analyzed the
equilibrium fractions of the entities, which are the products
of chemical reactions involving CO2 and CO32− or OH−. First,
the pyrocarbonate (C2O52−) ion concentration exhibits a sharp
rise at a very short time scale followed by a steep decay and
eventually becomes zero around 500 ps. Bicarbonate anions
(HCO3−) also show their presence in significant amounts,
almost similar to C2O52−, in the initial time scale, and then
decay faster and finally converge to a number close to two. In
contrast, water molecules exhibit a steep surge in their
numbers until 500 ps before converging to an equilibrium.
These observations further substantiate that water and HCO3−
ions are thermodynamically more stable products than C2O52−,

which is more like a transient species. Another important
finding from Figure 7 is the contrasting behavior in CO2 and
H2O fractions at the equilibrium�even though we started our
simulations with a finite number of CO2 molecules, there is no
trace found after 500 ps. An opposite scenario is observed for
water molecules where we started with zero concentration and
ended up with a large number of H2O molecules at
equilibrium. This particular feature cements the fact that, in
this kind of eutectic mixture, water is a more stable species
compared to CO2, as concluded based on our previous results
from chemical reaction equilibrium simulations11 and also
inferred from AIMD trajectories.25 In summary, these
quantitative estimations provide us with an excellent insight
into such a complex chemical environment. Furthermore, it is
only possible because of the DNN potential to study the
chemical reactivity involving large system sizes and a longer
time scale to reach an equilibrium.
3.4. Transport Properties. On the basis of the DPMD

trajectory for Type II systems, we have computed the mean-
squared displacements and subsequently the diffusion
coefficients of Li+ and K+ ions in the melt. The results
obtained from DPMD simulations were compared against the
AIMD data and are summarized in Table S1 of the SI.
Diffusion coefficients in the table (for finite systems) are
expected to be approximately 10% lower than for the infinite
system size. Overall, the DPMD predicted diffusion coefficient
values show a satisfactory agreement with the AIMD data.
Specifically, DPMD results underestimate the AIMD com-
puted diffusion coefficients by a maximum of 5%. Most
importantly, the trend observed in both approaches is the
same�K+ is the cation found to diffuse slightly faster than the
Li+ ion.
In addition to studying the reactive system, we have also

applied the DNN model to investigate the pure molten

Figure 7. Number of different chemical species present as a function of time during the DPMD trajectory of a large system (2.5 times larger than
the training system, Type II). The shaded area represents standard deviations.
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carbonates and hydroxide salts. Systems of pure molten
carbonates and hydroxides were composed of 500 cations and
250 carbonate or 500 hydroxide anions, i.e., 1500 atoms.
Simulations were carried out in the isothermal−isobaric (NpT)
ensemble for 2 ns to obtain liquid phase densities. Temper-
ature and pressure were maintained using the Nose−́Hoover
thermostat76,77 and barostat.78 Five independent trajectories
were generated, and densities were determined as the average
from the last 1 ns trajectory. First, the system temperature was
equilibrated in the NVT ensemble for 1 ns using fixed densities
obtained from NpT simulations for the viscosity calculations. It
was followed by a 4 ns production run in the microcanonical
(NVE) ensemble. The NVE ensemble was chosen to avoid any
possible effects from the barostat or thermostat on the
dynamics of the systems. Other details of the viscosity
calculations are described in the SI.
Densities of molten carbonates and hydroxides obtained

from DPMD simulations are compared against the available
experimental measurements as well as AIMD computed results
and are summarized in Table 1. We observed significant

deviations between DPMD predicted densities and exper-
imental or AIMD values. It is surprising that the density
obtained from the DNN model consistently underestimates
the AIMD density, irrespective of whether it is a carbonate or
hydroxide melt. Since the DNN potential was trained against
the AIMD reference potential energy surfaces containing pure
carbonates and hydroxides, it would have been expected that
the DPMD density would resemble the AIMD one. Such
consistent underestimation of liquid phase density could be
attributed to the limited configuration space used in the
training of the DNN potential. To substantiate this, Figure S5
of the SI demonstrates a sampling of densities in pure salts
during the active learning process. As can be seen, AIMD
densities were not accurately sampled in these systems. One
reason could be that the initial configurations used in the active
learning were at low densities. Since these systems are high-
temperature molten salts, sampling the density at lower T is
not physically meaningful. It must be noted here that, during
the active learning process, all the reference potential energy
surfaces, be it a carbonate−hydroxide mixture or pure salts,
were obtained at p = 1 bar pressure. Therefore, one must
perform active learning at higher pressures to obtain snapshots
with densities close to the AIMD ones. Moreover, the DNN
model should be able to identify structures that may collapse.
This information may be learned from example configurations
with randomly displaced atoms and/or scaled distances
between atoms.82 Despite the observed discrepancies in the

densities of pure salts, we believe it would not have any
significant impact on the studied chemical reactions in the
molten electrolyte system containing
dissolved CO2.
Table 2 summarizes DPMD computed viscosities of molten

carbonates and hydroxides and their comparison against the

available experimental measurements as well as previous
simulation results using a classical force field. As is evident,
the DPMD predicted viscosity values compare well with the
available experimental data. More importantly, when compared
against the simulated estimates from an empirical potential,22

the DNN model shows much better performance. Of course, a
significant drawback in the applied classical force field in ref 22
was the usage of full charges (±1e) on the ions, neglecting the
inevitable effects of electronic polarization and charge transfer
between ions. Our viscosity results are also consistent with the
results reported in ref 53 based on a DPMD potential for the
molten Li2CO3−K2CO3 binary salts. However, ref 53 reports
higher values of density for similar systems compared to our
results, though our DPMD model overestimates the AIMD
density of Li0.6K0.4CO3 by 5%, while ref 53 compares the
results only to experimental ones. These differences in
densities may come from the different parameters used in
the training of the DNN potential and ab initio data set
generation. Despite this, the present results employing the
DNN potential are pretty promising. They demonstrate the
ability of such neural network potentials to predict transport
quantities with a maximum deviation less than 15% from the
experimental measurements. This is particularly a very positive
outlook for the DNN potentials in terms of their applications
in investigating transport quantities of molten salts in general,
which is always a cumbersome task using classical empirical
potentials.

4. CONCLUSIONS
In this work, the DPMD54 framework was used to train a
robust and versatile machine learning potential for the study of
chemical reactions in CO2 dissolved in
electrolyte. Our goal was to investigate various chemical
reactions and the equilibrium composition of chemical species
present in the system with ab initio accuracy. The reference
training data set was generated using DFT-based molecular
dynamics simulations. With the aid of the appropriate design of
the reference database and the minimization of a loss function
involving both potential energy and atomic forces, the DNN
potential achieved a DFT-level accuracy in energy and force
predictions. Extensive validations including the local structure,
reaction kinetics, and evolution of chemical moieties at a short
time scale in the electrolyte system

Table 1. DPMD Computed Densities (kg m−3) of Molten
Carbonates and Hydroxides, Compared against the
Experimental Measurements and AIMD Results

system T (K) exptl AIMD DPMD

Li2CO3 1043.15 181379 1907.2 ± 4.6 1834.9 ± 0.2
K2CO3 1213.15 187879 1932.1 ± 6.4 1809.0 ± 0.3
Li0.6K0.4CO3 923.15 193879 2004.0 ± 4.5 1791.0 ± 0.4
LiOH 923.15 129679,a 1534.4 ± 2.8 1451.5 ± 0.3

136280,a

KOH 923.15 160779,a 1807.2 ± 7.8 1520.3 ± 0.3
164280,a

172781,a

aExtrapolated above experimental temperature range.

Table 2. DPMD Computed Viscosities (cP) of Molten
Carbonates and Hydroxides, Compared against the
Experimental Measurements79 and Classical MD results22a

system T (K) exptl DPMD MD

Li2CO3 1101 4.9 5.0 ± 1.0 (2%) 7.3 ± 0.7 (50%)
K2CO3 1180 3.0 2.9 ± 0.8 (−5%) 4.1 ± 0.2 (37%)
Li0.6K0.4CO3 1103 3.5 3.0 ± 0.8 (−14%) 7.1 ± 0.2 (103%)
LiOH 805 − 2.6 ± 0.6 2.2 ± 0.1
KOH 839 0.9 0.8 ± 0.2 (−12%) 1.7 ± 0.1 (78%)

aQuantities in parentheses are the percent deviations from the
experimental values.
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containing dissolved CO2 demonstrated remarkable and
consistent agreement between DPMD and AIMD simulations.
With the linear scaling of DNN potential, we explored the
chemical reactivity, equilibrium composition, and dynamics of
the molten salt mixture, including CO2 molecules using a
larger supercell (2.5 times) through MD with DFT accuracy.
DPMD trajectories in the nanosecond time scale revealed that
a reaction between CO2 and CO32− (see eq 2) yielding a
pyrocarbonate (C2O52−) ion was indeed a transient species in
the system. Moreover, the reaction completely stopped within
500 ps. We observed a higher reactivity of CO2 with OH−

leading to the formation of bicarbonate (HCO3−) ion via eq 3.
The bicarbonate ions followed a quick conversion to water and
CO32− leading to a net increase in the water concentration in
the system. As a result of the high reactivity of CO2 with either
CO32− or OH−, there was no trace of the CO2 molecule after
500 ps. The equilibrium composition of the mixture consisted
of CO32−, OH−, HCO3−, and H2O, further confirming the much
higher thermodynamic stability of water than that of CO2 in
the melt. These observations reproduced our earlier
predictions based on chemical reaction equilibrium simu-
lations.11 In addition, the diffusion coefficients of cations were
predicted within the acceptable accuracy of earlier performed
AIMD results.
We have also applied the DNN potential to study pure

carbonate and hydroxide melts based on Li+ and K+ cations.
Although the predicted density of molten salts showed
reasonable agreement with experimental results, the resulting
densities were linked to the lack of training data at a wider
range of densities and with unphysical structures and, thus, not
sampled through the whole configuration space. Such
deviations in the computed densities of molten salts obtained
from machine learning potentials were also observed in the
previous study of LiF and FLiBe molten salts.50 Another
prospect would be to include information about pressure
tensors in the training of the DNN potential as well as long-
ranged interactions beyond the cutoff of DPMD, which may
also improve the resulting liquid density.
In summary, a deep neural network potential has

demonstrated high adaptability to diverse local environments
while retaining near quantum chemical accuracy. This feature
is highly advantageous for practical applications since real
systems involve multiple components and span wide
thermodynamic conditions. It demonstrates a remarkable
edge over classical empirical potentials, which are designed
for specific applications and possess accuracy limitations,
specifically in reactive systems and systems of growing
complexity. Therefore, DNN-based MD simulations represent
a promising pathway to address the long-standing accuracy-
versus-cost trade-off. Furthermore, the predictive quality of
DNN potentials can be systematically improved by incorporat-
ing information pertaining to various phases, states, chemical
species, etc., in the training database. Such potentials will be
developed and employed to investigate more computationally
challenging systems in future work, facilitating substantial
acceleration in screening and permitting interpolation across
chemical space.
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